Performance tips#

using DataFrames
using BenchmarkTools
using CategoricalArrays
using PooledArrays
using Random

Access by column number is faster than by name#

x = DataFrame(rand(5, 1000), :auto)
@btime $x[!, 500]; ## Faster
  3.857 ns (0 allocations: 0 bytes)
@btime $x.x500;  ## Slower
  14.953 ns (0 allocations: 0 bytes)

When working with data DataFrame use barrier functions or type annotation#

function f_bad() ## this function will be slow
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y, z = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_bad();
# if you run @code_warntype f_bad() then you notice
# that Julia does not know column types of `DataFrame`
  189.746 ms (5999022 allocations: 122.06 MiB)

solution 1 is to use barrier function (it should be possible to use it in almost any code) for the calculation. You will notice much less memopry allocations and faster performance.

function f_inner(y, z)
    p = 0.0
    for i in eachindex(y, z)
        p += y[i] * z[i]
    end
    p
end

function f_barrier()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    f_inner(x[!, 1], x[!, 2])
end

@btime f_barrier();
  4.215 ms (44 allocations: 30.52 MiB)

or use inbuilt function if possible

using LinearAlgebra

function f_inbuilt()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    dot(x[!, 1], x[!, 2])
end

@btime f_inbuilt();
  3.770 ms (44 allocations: 30.52 MiB)

solution 2 is to provide the types of extracted columns. However, there are cases in which you will not know these types.

function f_typed()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y::Vector{Float64}, z::Vector{Float64} = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_typed();
  3.871 ms (44 allocations: 30.52 MiB)

In general for tall and narrow tables it is often useful to use Tables.rowtable, Tables.columntable or Tables.namedtupleiterator for intermediate processing of data in a type-stable way.

Consider using delayed DataFrame creation technique#

also notice the difference in performance between copying vs non-copying data frame creation

function f1()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto, copycols=false) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f1a()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f2()
    x = Vector{Any}(undef, 100)
    for c in 1:length(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto, copycols=false) ## we delay creation of DataFrame after we have our job done
end

function f2a()
    x = Vector{Any}(undef, 100)
    for c in eachindex(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto) ## we delay creation of DataFrame after we have our job done
end

@btime f1();
@btime f1a();
@btime f2();
@btime f2a();
  27.945 ms (1949728 allocations: 37.40 MiB)
  28.612 ms (1950028 allocations: 45.03 MiB)
  1.146 ms (728 allocations: 7.66 MiB)
  1.553 ms (1028 allocations: 15.29 MiB)

You can add rows to a DataFrame in place and it is fast#

x = DataFrame(rand(10^6, 5), :auto)
y = DataFrame(transpose(1.0:5.0), :auto)
z = [1.0:5.0;]

@btime vcat($x, $y); ## creates a new DataFrame - slow
@btime append!($x, $y); ## in place - fast

x = DataFrame(rand(10^6, 5), :auto) ## reset to the same starting point
@btime push!($x, $z); ## add a single row in place - fast
  1.860 ms (212 allocations: 38.16 MiB)
  1.182 μs (29 allocations: 1.50 KiB)
  427.578 ns (16 allocations: 256 bytes)

Allowing missing as well as categorical slows down computations#

using StatsBase

function test(data) ## uses countmap function to test performance
    println(eltype(data))
    x = rand(data, 10^6)
    y = categorical(x)
    println(" raw:")
    @btime countmap($x)
    println(" categorical:")
    @btime countmap($y)
    nothing
end

test(1:10)
test([randstring() for i in 1:10])
test(allowmissing(1:10))
test(allowmissing([randstring() for i in 1:10]))
Int64
 raw:
  1.946 ms (8 allocations: 7.63 MiB)
 categorical:
  15.488 ms (1000004 allocations: 30.52 MiB)
String
 raw:
  21.136 ms (4 allocations: 448 bytes)
 categorical:
  31.496 ms (1000004 allocations: 30.52 MiB)
Union{Missing, Int64}
 raw:
  5.968 ms (4 allocations: 464 bytes)
 categorical:
  15.863 ms (1000004 allocations: 30.52 MiB)
Union{Missing, String}
 raw:
  19.541 ms (4 allocations: 448 bytes)
 categorical:
  29.501 ms (1000004 allocations: 30.52 MiB)

When aggregating use column selector and prefer integer, categorical, or pooled array grouping variable#

df = DataFrame(x=rand('a':'d', 10^7), y=1);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2501727 rows): x = 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
2501702 rows omitted
Rowxy
CharInt64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2501716d1
2501717d1
2501718d1
2501719d1
2501720d1
2501721d1
2501722d1
2501723d1
2501724d1
2501725d1
2501726d1
2501727d1

Last Group (2498298 rows): x = 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
2498273 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4c1
5c1
6c1
7c1
8c1
9c1
10c1
11c1
12c1
13c1
2498287c1
2498288c1
2498289c1
2498290c1
2498291c1
2498292c1
2498293c1
2498294c1
2498295c1
2498296c1
2498297c1
2498298c1

traditional syntax, slow

@btime combine(v -> sum(v.y), $gdf)
  16.411 ms (332 allocations: 19.10 MiB)
4×2 DataFrame
Rowxx1
CharInt64
1d2501727
2a2500441
3b2499534
4c2498298

use column selector

@btime combine($gdf, :y => sum)
  6.973 ms (198 allocations: 10.14 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1d2501727
2a2500441
3b2499534
4c2498298
transform!(df, :x => categorical => :x);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500441 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'a'
2500416 rows omitted
Rowxy
Cat…Int64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2500430a1
2500431a1
2500432a1
2500433a1
2500434a1
2500435a1
2500436a1
2500437a1
2500438a1
2500439a1
2500440a1
2500441a1

Last Group (2501727 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'd'
2501702 rows omitted
Rowxy
Cat…Int64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2501716d1
2501717d1
2501718d1
2501719d1
2501720d1
2501721d1
2501722d1
2501723d1
2501724d1
2501725d1
2501726d1
2501727d1
@btime combine($gdf, :y => sum)
  6.860 ms (206 allocations: 10.62 KiB)
4×2 DataFrame
Rowxy_sum
Cat…Int64
1a2500441
2b2499534
3c2498298
4d2501727
transform!(df, :x => PooledArray{Char} => :x)
10000000×2 DataFrame
9999975 rows omitted
Rowxy
CharInt64
1d1
2a1
3b1
4d1
5b1
6b1
7c1
8c1
9b1
10b1
11a1
12b1
13b1
9999989c1
9999990b1
9999991b1
9999992c1
9999993d1
9999994c1
9999995c1
9999996d1
9999997a1
9999998b1
9999999c1
10000000b1
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2501727 rows): x = 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
2501702 rows omitted
Rowxy
CharInt64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2501716d1
2501717d1
2501718d1
2501719d1
2501720d1
2501721d1
2501722d1
2501723d1
2501724d1
2501725d1
2501726d1
2501727d1

Last Group (2498298 rows): x = 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
2498273 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4c1
5c1
6c1
7c1
8c1
9c1
10c1
11c1
12c1
13c1
2498287c1
2498288c1
2498289c1
2498290c1
2498291c1
2498292c1
2498293c1
2498294c1
2498295c1
2498296c1
2498297c1
2498298c1
@btime combine($gdf, :y => sum)
  6.923 ms (200 allocations: 10.20 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1d2501727
2a2500441
3b2499534
4c2498298

Use views instead of materializing a new DataFrame#

x = DataFrame(rand(100, 1000), :auto)
@btime $x[1:1, :]
  180.477 μs (3993 allocations: 159.03 KiB)
1×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5658530.9059040.9818520.9636620.8298620.1266340.9348650.3538030.6456450.08175370.8995980.2818440.6562930.7560120.2320530.4585630.7720530.06391780.7828810.5445490.6370410.1310680.561720.5724850.6120040.4966850.9887370.4147180.7619140.52080.3777270.381720.2183420.2064180.3698630.5877360.5485220.921620.9363420.8641870.6771560.4194250.4793560.05824110.8536250.8834590.5271130.6244960.8051670.6073690.6508720.894970.8978110.705860.8330610.6239620.8698840.7460710.02901090.1172920.08857750.5253370.1507970.3109110.6418440.6122150.8361060.4030740.2008350.2746670.7686540.007170390.0261510.9403750.7120150.4347110.9381420.4973450.03566260.7508230.4962580.6512540.842460.04214480.1186320.4873330.5408460.4953250.1129020.6473890.4020410.837430.6288730.04078830.84970.03733330.1876170.4176320.4808280.864196
@btime $x[1, :]
  23.457 ns (0 allocations: 0 bytes)
DataFrameRow (1000 columns)
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5658530.9059040.9818520.9636620.8298620.1266340.9348650.3538030.6456450.08175370.8995980.2818440.6562930.7560120.2320530.4585630.7720530.06391780.7828810.5445490.6370410.1310680.561720.5724850.6120040.4966850.9887370.4147180.7619140.52080.3777270.381720.2183420.2064180.3698630.5877360.5485220.921620.9363420.8641870.6771560.4194250.4793560.05824110.8536250.8834590.5271130.6244960.8051670.6073690.6508720.894970.8978110.705860.8330610.6239620.8698840.7460710.02901090.1172920.08857750.5253370.1507970.3109110.6418440.6122150.8361060.4030740.2008350.2746670.7686540.007170390.0261510.9403750.7120150.4347110.9381420.4973450.03566260.7508230.4962580.6512540.842460.04214480.1186320.4873330.5408460.4953250.1129020.6473890.4020410.837430.6288730.04078830.84970.03733330.1876170.4176320.4808280.864196
@btime view($x, 1:1, :)
  23.457 ns (0 allocations: 0 bytes)
1×1000 SubDataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5658530.9059040.9818520.9636620.8298620.1266340.9348650.3538030.6456450.08175370.8995980.2818440.6562930.7560120.2320530.4585630.7720530.06391780.7828810.5445490.6370410.1310680.561720.5724850.6120040.4966850.9887370.4147180.7619140.52080.3777270.381720.2183420.2064180.3698630.5877360.5485220.921620.9363420.8641870.6771560.4194250.4793560.05824110.8536250.8834590.5271130.6244960.8051670.6073690.6508720.894970.8978110.705860.8330610.6239620.8698840.7460710.02901090.1172920.08857750.5253370.1507970.3109110.6418440.6122150.8361060.4030740.2008350.2746670.7686540.007170390.0261510.9403750.7120150.4347110.9381420.4973450.03566260.7508230.4962580.6512540.842460.04214480.1186320.4873330.5408460.4953250.1129020.6473890.4020410.837430.6288730.04078830.84970.03733330.1876170.4176320.4808280.864196
@btime $x[1:1, 1:20]
  3.924 μs (70 allocations: 3.09 KiB)
1×20 DataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5658530.9059040.9818520.9636620.8298620.1266340.9348650.3538030.6456450.08175370.8995980.2818440.6562930.7560120.2320530.4585630.7720530.06391780.7828810.544549
@btime $x[1, 1:20]
  24.383 ns (0 allocations: 0 bytes)
DataFrameRow (20 columns)
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5658530.9059040.9818520.9636620.8298620.1266340.9348650.3538030.6456450.08175370.8995980.2818440.6562930.7560120.2320530.4585630.7720530.06391780.7828810.544549
@btime view($x, 1:1, 1:20)
  24.383 ns (0 allocations: 0 bytes)
1×20 SubDataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5658530.9059040.9818520.9636620.8298620.1266340.9348650.3538030.6456450.08175370.8995980.2818440.6562930.7560120.2320530.4585630.7720530.06391780.7828810.544549

This notebook was generated using Literate.jl.