Performance tips#

using DataFrames
using BenchmarkTools
using CategoricalArrays
using PooledArrays
using Random

Access by column number is faster than by name#

x = DataFrame(rand(5, 1000), :auto)
@btime $x[!, 500]; ## Faster
  4.018 ns (0 allocations: 0 bytes)
@btime $x.x500;  ## Slower
  15.420 ns (0 allocations: 0 bytes)

When working with data DataFrame use barrier functions or type annotation#

function f_bad() ## this function will be slow
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y, z = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_bad();
# if you run @code_warntype f_bad() then you notice
# that Julia does not know column types of `DataFrame`
  187.409 ms (5999022 allocations: 122.06 MiB)

solution 1 is to use barrier function (it should be possible to use it in almost any code) for the calculation. You will notice much less memopry allocations and faster performance.

function f_inner(y, z)
    p = 0.0
    for i in eachindex(y, z)
        p += y[i] * z[i]
    end
    p
end

function f_barrier()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    f_inner(x[!, 1], x[!, 2])
end

@btime f_barrier();
  4.243 ms (44 allocations: 30.52 MiB)

or use inbuilt function if possible

using LinearAlgebra

function f_inbuilt()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    dot(x[!, 1], x[!, 2])
end

@btime f_inbuilt();
  3.652 ms (44 allocations: 30.52 MiB)

solution 2 is to provide the types of extracted columns. However, there are cases in which you will not know these types.

function f_typed()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y::Vector{Float64}, z::Vector{Float64} = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_typed();
  4.253 ms (44 allocations: 30.52 MiB)

In general for tall and narrow tables it is often useful to use Tables.rowtable, Tables.columntable or Tables.namedtupleiterator for intermediate processing of data in a type-stable way.

Consider using delayed DataFrame creation technique#

also notice the difference in performance between copying vs non-copying data frame creation

function f1()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto, copycols=false) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f1a()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f2()
    x = Vector{Any}(undef, 100)
    for c in 1:length(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto, copycols=false) ## we delay creation of DataFrame after we have our job done
end

function f2a()
    x = Vector{Any}(undef, 100)
    for c in eachindex(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto) ## we delay creation of DataFrame after we have our job done
end

@btime f1();
@btime f1a();
@btime f2();
@btime f2a();
  27.118 ms (1949728 allocations: 37.40 MiB)
  28.267 ms (1950028 allocations: 45.03 MiB)
  1.154 ms (728 allocations: 7.66 MiB)
  1.563 ms (1028 allocations: 15.29 MiB)

You can add rows to a DataFrame in place and it is fast#

x = DataFrame(rand(10^6, 5), :auto)
y = DataFrame(transpose(1.0:5.0), :auto)
z = [1.0:5.0;]

@btime vcat($x, $y); ## creates a new DataFrame - slow
@btime append!($x, $y); ## in place - fast

x = DataFrame(rand(10^6, 5), :auto) ## reset to the same starting point
@btime push!($x, $z); ## add a single row in place - fast
  2.471 ms (212 allocations: 38.16 MiB)
  1.104 μs (29 allocations: 1.50 KiB)
  421.090 ns (16 allocations: 256 bytes)

Allowing missing as well as categorical slows down computations#

using StatsBase

function test(data) ## uses countmap function to test performance
    println(eltype(data))
    x = rand(data, 10^6)
    y = categorical(x)
    println(" raw:")
    @btime countmap($x)
    println(" categorical:")
    @btime countmap($y)
    nothing
end

test(1:10)
test([randstring() for i in 1:10])
test(allowmissing(1:10))
test(allowmissing([randstring() for i in 1:10]))
Int64
 raw:
  1.789 ms (8 allocations: 7.63 MiB)
 categorical:
  15.489 ms (1000004 allocations: 30.52 MiB)
String
 raw:
  17.567 ms (4 allocations: 448 bytes)
 categorical:
  28.681 ms (1000004 allocations: 30.52 MiB)
Union{Missing, Int64}
 raw:
  6.007 ms (4 allocations: 464 bytes)
 categorical:
  16.462 ms (1000004 allocations: 30.52 MiB)
Union{Missing, String}
 raw:
  15.014 ms (4 allocations: 448 bytes)
 categorical:
  25.889 ms (1000004 allocations: 30.52 MiB)

When aggregating use column selector and prefer integer, categorical, or pooled array grouping variable#

df = DataFrame(x=rand('a':'d', 10^7), y=1);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500975 rows): x = 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
2500950 rows omitted
Rowxy
CharInt64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2500964d1
2500965d1
2500966d1
2500967d1
2500968d1
2500969d1
2500970d1
2500971d1
2500972d1
2500973d1
2500974d1
2500975d1

Last Group (2498826 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2498801 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2498815b1
2498816b1
2498817b1
2498818b1
2498819b1
2498820b1
2498821b1
2498822b1
2498823b1
2498824b1
2498825b1
2498826b1

traditional syntax, slow

@btime combine(v -> sum(v.y), $gdf)
  18.332 ms (322 allocations: 19.09 MiB)
4×2 DataFrame
Rowxx1
CharInt64
1d2500975
2c2496821
3a2503378
4b2498826

use column selector

@btime combine($gdf, :y => sum)
  6.858 ms (198 allocations: 10.14 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1d2500975
2c2496821
3a2503378
4b2498826
transform!(df, :x => categorical => :x);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2503378 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'a'
2503353 rows omitted
Rowxy
Cat…Int64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2503367a1
2503368a1
2503369a1
2503370a1
2503371a1
2503372a1
2503373a1
2503374a1
2503375a1
2503376a1
2503377a1
2503378a1

Last Group (2500975 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'd'
2500950 rows omitted
Rowxy
Cat…Int64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2500964d1
2500965d1
2500966d1
2500967d1
2500968d1
2500969d1
2500970d1
2500971d1
2500972d1
2500973d1
2500974d1
2500975d1
@btime combine($gdf, :y => sum)
  6.936 ms (206 allocations: 10.62 KiB)
4×2 DataFrame
Rowxy_sum
Cat…Int64
1a2503378
2b2498826
3c2496821
4d2500975
transform!(df, :x => PooledArray{Char} => :x)
10000000×2 DataFrame
9999975 rows omitted
Rowxy
CharInt64
1d1
2d1
3c1
4c1
5d1
6c1
7d1
8d1
9a1
10c1
11c1
12b1
13c1
9999989b1
9999990d1
9999991c1
9999992d1
9999993d1
9999994a1
9999995b1
9999996d1
9999997c1
9999998a1
9999999d1
10000000c1
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500975 rows): x = 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
2500950 rows omitted
Rowxy
CharInt64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2500964d1
2500965d1
2500966d1
2500967d1
2500968d1
2500969d1
2500970d1
2500971d1
2500972d1
2500973d1
2500974d1
2500975d1

Last Group (2498826 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2498801 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2498815b1
2498816b1
2498817b1
2498818b1
2498819b1
2498820b1
2498821b1
2498822b1
2498823b1
2498824b1
2498825b1
2498826b1
@btime combine($gdf, :y => sum)
  6.845 ms (200 allocations: 10.20 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1d2500975
2c2496821
3a2503378
4b2498826

Use views instead of materializing a new DataFrame#

x = DataFrame(rand(100, 1000), :auto)
@btime $x[1:1, :]
  177.912 μs (3993 allocations: 159.03 KiB)
1×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5338320.7402860.8532340.7770970.6114640.3245630.4993390.7494080.9278470.8703770.9656510.721970.5740520.4781480.9831110.5560640.3748390.9169840.01937920.7557160.9756260.7307090.8219560.3909360.5563540.417730.8357590.2930130.1985530.8620850.109880.1729730.9192610.8064780.8785560.235240.9020180.9133810.3724420.904860.1310840.6084270.7339880.3800720.7761940.03347670.6114890.9406870.9583610.2310760.1780970.05103540.07841320.07032680.1952660.2569650.6919820.1734610.1861910.4387120.2428390.3683790.9886250.8505560.9005740.4626830.6669230.3398470.6589770.5026270.2716950.2919880.8442420.816070.8182860.1778580.9769940.7860260.109080.6751340.5567520.2497790.2778540.3348310.9976430.9046620.1284190.1349030.4416240.9351330.978470.9383620.4053370.1198870.5166250.9973160.397030.5995070.9971730.713875
@btime $x[1, :]
  20.701 ns (0 allocations: 0 bytes)
DataFrameRow (1000 columns)
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5338320.7402860.8532340.7770970.6114640.3245630.4993390.7494080.9278470.8703770.9656510.721970.5740520.4781480.9831110.5560640.3748390.9169840.01937920.7557160.9756260.7307090.8219560.3909360.5563540.417730.8357590.2930130.1985530.8620850.109880.1729730.9192610.8064780.8785560.235240.9020180.9133810.3724420.904860.1310840.6084270.7339880.3800720.7761940.03347670.6114890.9406870.9583610.2310760.1780970.05103540.07841320.07032680.1952660.2569650.6919820.1734610.1861910.4387120.2428390.3683790.9886250.8505560.9005740.4626830.6669230.3398470.6589770.5026270.2716950.2919880.8442420.816070.8182860.1778580.9769940.7860260.109080.6751340.5567520.2497790.2778540.3348310.9976430.9046620.1284190.1349030.4416240.9351330.978470.9383620.4053370.1198870.5166250.9973160.397030.5995070.9971730.713875
@btime view($x, 1:1, :)
  20.700 ns (0 allocations: 0 bytes)
1×1000 SubDataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5338320.7402860.8532340.7770970.6114640.3245630.4993390.7494080.9278470.8703770.9656510.721970.5740520.4781480.9831110.5560640.3748390.9169840.01937920.7557160.9756260.7307090.8219560.3909360.5563540.417730.8357590.2930130.1985530.8620850.109880.1729730.9192610.8064780.8785560.235240.9020180.9133810.3724420.904860.1310840.6084270.7339880.3800720.7761940.03347670.6114890.9406870.9583610.2310760.1780970.05103540.07841320.07032680.1952660.2569650.6919820.1734610.1861910.4387120.2428390.3683790.9886250.8505560.9005740.4626830.6669230.3398470.6589770.5026270.2716950.2919880.8442420.816070.8182860.1778580.9769940.7860260.109080.6751340.5567520.2497790.2778540.3348310.9976430.9046620.1284190.1349030.4416240.9351330.978470.9383620.4053370.1198870.5166250.9973160.397030.5995070.9971730.713875
@btime $x[1:1, 1:20]
  3.796 μs (70 allocations: 3.09 KiB)
1×20 DataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5338320.7402860.8532340.7770970.6114640.3245630.4993390.7494080.9278470.8703770.9656510.721970.5740520.4781480.9831110.5560640.3748390.9169840.01937920.755716
@btime $x[1, 1:20]
  21.999 ns (0 allocations: 0 bytes)
DataFrameRow (20 columns)
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5338320.7402860.8532340.7770970.6114640.3245630.4993390.7494080.9278470.8703770.9656510.721970.5740520.4781480.9831110.5560640.3748390.9169840.01937920.755716
@btime view($x, 1:1, 1:20)
  21.957 ns (0 allocations: 0 bytes)
1×20 SubDataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.5338320.7402860.8532340.7770970.6114640.3245630.4993390.7494080.9278470.8703770.9656510.721970.5740520.4781480.9831110.5560640.3748390.9169840.01937920.755716

This notebook was generated using Literate.jl.