Performance tips#

using DataFrames
using BenchmarkTools
using CategoricalArrays
using PooledArrays
using Random

Access by column number is faster than by name#

x = DataFrame(rand(5, 1000), :auto)
@btime $x[!, 500]; ## Faster
  3.085 ns (0 allocations: 0 bytes)
@btime $x.x500;  ## Slower
  11.422 ns (0 allocations: 0 bytes)

When working with data DataFrame use barrier functions or type annotation#

function f_bad() ## this function will be slow
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y, z = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_bad();
# if you run @code_warntype f_bad() then you notice
# that Julia does not know column types of `DataFrame`
  106.814 ms (5999022 allocations: 122.06 MiB)

solution 1 is to use barrier function (it should be possible to use it in almost any code) for the calculation. You will notice much less memopry allocations and faster performance.

function f_inner(y, z)
    p = 0.0
    for i in eachindex(y, z)
        p += y[i] * z[i]
    end
    p
end

function f_barrier()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    f_inner(x[!, 1], x[!, 2])
end

@btime f_barrier();
  3.731 ms (44 allocations: 30.52 MiB)

or use inbuilt function if possible

using LinearAlgebra

function f_inbuilt()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    dot(x[!, 1], x[!, 2])
end

@btime f_inbuilt();
  3.199 ms (44 allocations: 30.52 MiB)

solution 2 is to provide the types of extracted columns. However, there are cases in which you will not know these types.

function f_typed()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y::Vector{Float64}, z::Vector{Float64} = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_typed();
  3.740 ms (44 allocations: 30.52 MiB)

In general for tall and narrow tables it is often useful to use Tables.rowtable, Tables.columntable or Tables.namedtupleiterator for intermediate processing of data in a type-stable way.

Consider using delayed DataFrame creation technique#

also notice the difference in performance between copying vs non-copying data frame creation

function f1()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto, copycols=false) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f1a()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f2()
    x = Vector{Any}(undef, 100)
    for c in 1:length(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto, copycols=false) ## we delay creation of DataFrame after we have our job done
end

function f2a()
    x = Vector{Any}(undef, 100)
    for c in eachindex(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto) ## we delay creation of DataFrame after we have our job done
end

@btime f1();
@btime f1a();
@btime f2();
@btime f2a();
  27.857 ms (1949728 allocations: 37.40 MiB)
  29.385 ms (1950028 allocations: 45.03 MiB)
  1.142 ms (728 allocations: 7.66 MiB)
  1.566 ms (1028 allocations: 15.29 MiB)

You can add rows to a DataFrame in place and it is fast#

x = DataFrame(rand(10^6, 5), :auto)
y = DataFrame(transpose(1.0:5.0), :auto)
z = [1.0:5.0;]

@btime vcat($x, $y); ## creates a new DataFrame - slow
@btime append!($x, $y); ## in place - fast

x = DataFrame(rand(10^6, 5), :auto) ## reset to the same starting point
@btime push!($x, $z); ## add a single row in place - fast
  2.682 ms (212 allocations: 38.16 MiB)
  1.162 μs (29 allocations: 1.50 KiB)
  444.061 ns (16 allocations: 256 bytes)

Allowing missing as well as categorical slows down computations#

using StatsBase

function test(data) ## uses countmap function to test performance
    println(eltype(data))
    x = rand(data, 10^6)
    y = categorical(x)
    println(" raw:")
    @btime countmap($x)
    println(" categorical:")
    @btime countmap($y)
    nothing
end

test(1:10)
test([randstring() for i in 1:10])
test(allowmissing(1:10))
test(allowmissing([randstring() for i in 1:10]))
Int64
 raw:
  1.673 ms (8 allocations: 7.63 MiB)
 categorical:
  15.511 ms (1000004 allocations: 30.52 MiB)
String
 raw:
  25.895 ms (4 allocations: 448 bytes)
 categorical:
  35.561 ms (1000004 allocations: 30.52 MiB)
Union{Missing, Int64}
 raw:
  6.011 ms (4 allocations: 464 bytes)
 categorical:
  16.055 ms (1000004 allocations: 30.52 MiB)
Union{Missing, String}
 raw:
  26.963 ms (4 allocations: 448 bytes)
 categorical:
  38.175 ms (1000004 allocations: 30.52 MiB)

When aggregating use column selector and prefer integer, categorical, or pooled array grouping variable#

df = DataFrame(x=rand('a':'d', 10^7), y=1);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2501733 rows): x = 'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
2501708 rows omitted
Rowxy
CharInt64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2501722a1
2501723a1
2501724a1
2501725a1
2501726a1
2501727a1
2501728a1
2501729a1
2501730a1
2501731a1
2501732a1
2501733a1

Last Group (2499520 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2499495 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2499509b1
2499510b1
2499511b1
2499512b1
2499513b1
2499514b1
2499515b1
2499516b1
2499517b1
2499518b1
2499519b1
2499520b1

traditional syntax, slow

@btime combine(v -> sum(v.y), $gdf)
  16.005 ms (332 allocations: 19.10 MiB)
4×2 DataFrame
Rowxx1
CharInt64
1a2501733
2d2499971
3c2498776
4b2499520

use column selector

@btime combine($gdf, :y => sum)
  6.861 ms (198 allocations: 10.14 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1a2501733
2d2499971
3c2498776
4b2499520
transform!(df, :x => categorical => :x);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2501733 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'a'
2501708 rows omitted
Rowxy
Cat…Int64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2501722a1
2501723a1
2501724a1
2501725a1
2501726a1
2501727a1
2501728a1
2501729a1
2501730a1
2501731a1
2501732a1
2501733a1

Last Group (2499971 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'd'
2499946 rows omitted
Rowxy
Cat…Int64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2499960d1
2499961d1
2499962d1
2499963d1
2499964d1
2499965d1
2499966d1
2499967d1
2499968d1
2499969d1
2499970d1
2499971d1
@btime combine($gdf, :y => sum)
  6.938 ms (206 allocations: 10.62 KiB)
4×2 DataFrame
Rowxy_sum
Cat…Int64
1a2501733
2b2499520
3c2498776
4d2499971
transform!(df, :x => PooledArray{Char} => :x)
10000000×2 DataFrame
9999975 rows omitted
Rowxy
CharInt64
1a1
2d1
3a1
4d1
5a1
6c1
7c1
8a1
9a1
10b1
11c1
12b1
13b1
9999989d1
9999990a1
9999991b1
9999992c1
9999993d1
9999994b1
9999995b1
9999996c1
9999997c1
9999998b1
9999999a1
10000000d1
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2501733 rows): x = 'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
2501708 rows omitted
Rowxy
CharInt64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2501722a1
2501723a1
2501724a1
2501725a1
2501726a1
2501727a1
2501728a1
2501729a1
2501730a1
2501731a1
2501732a1
2501733a1

Last Group (2499520 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2499495 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2499509b1
2499510b1
2499511b1
2499512b1
2499513b1
2499514b1
2499515b1
2499516b1
2499517b1
2499518b1
2499519b1
2499520b1
@btime combine($gdf, :y => sum)
  6.906 ms (200 allocations: 10.20 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1a2501733
2d2499971
3c2498776
4b2499520

Use views instead of materializing a new DataFrame#

x = DataFrame(rand(100, 1000), :auto)
@btime $x[1:1, :]
  177.481 μs (3993 allocations: 159.07 KiB)
1×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.499360.5497150.411790.7810680.8470380.9176890.207210.8865220.67080.4070550.8738910.5862360.4330720.7854430.1878820.9052980.3246030.552680.1941650.424220.3694190.1605870.5626780.6477180.1480810.9448030.4918010.1889390.03604590.5556410.3374580.9838970.9050550.05955170.810690.5059260.5338370.279460.09164380.970810.4473910.742490.6356240.6489610.9625060.5350280.3365360.9736230.5468140.4411740.3443620.9118640.4969890.9824480.3361420.8238750.4246140.903950.6865410.2076210.7016760.1783970.845490.7894810.4411330.7016070.428210.1398120.1579490.02802770.08552870.788250.6596560.9315330.1639890.9724880.5040410.7137360.8394750.2531690.9585180.3610850.5513890.05818160.09556010.6280640.1125990.09725630.2690060.9334250.002806210.09831020.9894850.3070460.1189290.3521810.1909670.781910.661420.810833
@btime $x[1, :]
  20.369 ns (0 allocations: 0 bytes)
DataFrameRow (1000 columns)
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.499360.5497150.411790.7810680.8470380.9176890.207210.8865220.67080.4070550.8738910.5862360.4330720.7854430.1878820.9052980.3246030.552680.1941650.424220.3694190.1605870.5626780.6477180.1480810.9448030.4918010.1889390.03604590.5556410.3374580.9838970.9050550.05955170.810690.5059260.5338370.279460.09164380.970810.4473910.742490.6356240.6489610.9625060.5350280.3365360.9736230.5468140.4411740.3443620.9118640.4969890.9824480.3361420.8238750.4246140.903950.6865410.2076210.7016760.1783970.845490.7894810.4411330.7016070.428210.1398120.1579490.02802770.08552870.788250.6596560.9315330.1639890.9724880.5040410.7137360.8394750.2531690.9585180.3610850.5513890.05818160.09556010.6280640.1125990.09725630.2690060.9334250.002806210.09831020.9894850.3070460.1189290.3521810.1909670.781910.661420.810833
@btime view($x, 1:1, :)
  20.368 ns (0 allocations: 0 bytes)
1×1000 SubDataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.499360.5497150.411790.7810680.8470380.9176890.207210.8865220.67080.4070550.8738910.5862360.4330720.7854430.1878820.9052980.3246030.552680.1941650.424220.3694190.1605870.5626780.6477180.1480810.9448030.4918010.1889390.03604590.5556410.3374580.9838970.9050550.05955170.810690.5059260.5338370.279460.09164380.970810.4473910.742490.6356240.6489610.9625060.5350280.3365360.9736230.5468140.4411740.3443620.9118640.4969890.9824480.3361420.8238750.4246140.903950.6865410.2076210.7016760.1783970.845490.7894810.4411330.7016070.428210.1398120.1579490.02802770.08552870.788250.6596560.9315330.1639890.9724880.5040410.7137360.8394750.2531690.9585180.3610850.5513890.05818160.09556010.6280640.1125990.09725630.2690060.9334250.002806210.09831020.9894850.3070460.1189290.3521810.1909670.781910.661420.810833
@btime $x[1:1, 1:20]
  3.688 μs (70 allocations: 3.09 KiB)
1×20 DataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.499360.5497150.411790.7810680.8470380.9176890.207210.8865220.67080.4070550.8738910.5862360.4330720.7854430.1878820.9052980.3246030.552680.1941650.42422
@btime $x[1, 1:20]
  20.359 ns (0 allocations: 0 bytes)
DataFrameRow (20 columns)
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.499360.5497150.411790.7810680.8470380.9176890.207210.8865220.67080.4070550.8738910.5862360.4330720.7854430.1878820.9052980.3246030.552680.1941650.42422
@btime view($x, 1:1, 1:20)
  20.992 ns (0 allocations: 0 bytes)
1×20 SubDataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.499360.5497150.411790.7810680.8470380.9176890.207210.8865220.67080.4070550.8738910.5862360.4330720.7854430.1878820.9052980.3246030.552680.1941650.42422

This notebook was generated using Literate.jl.