Performance tips#

using DataFrames
using BenchmarkTools
using CategoricalArrays
using PooledArrays
using Random

Access by column number is faster than by name#

x = DataFrame(rand(5, 1000), :auto)
@btime $x[!, 500]; ## Faster
  3.095 ns (0 allocations: 0 bytes)
@btime $x.x500;  ## Slower
  11.122 ns (0 allocations: 0 bytes)

When working with data DataFrame use barrier functions or type annotation#

function f_bad() ## this function will be slow
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y, z = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_bad();
# if you run @code_warntype f_bad() then you notice
# that Julia does not know column types of `DataFrame`
  99.692 ms (5999022 allocations: 122.06 MiB)

solution 1 is to use barrier function (it should be possible to use it in almost any code) for the calculation. You will notice much less memopry allocations and faster performance.

function f_inner(y, z)
    p = 0.0
    for i in eachindex(y, z)
        p += y[i] * z[i]
    end
    p
end

function f_barrier()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    f_inner(x[!, 1], x[!, 2])
end

@btime f_barrier();
  4.277 ms (44 allocations: 30.52 MiB)

or use inbuilt function if possible

using LinearAlgebra

function f_inbuilt()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    dot(x[!, 1], x[!, 2])
end

@btime f_inbuilt();
  3.661 ms (44 allocations: 30.52 MiB)

solution 2 is to provide the types of extracted columns. However, there are cases in which you will not know these types.

function f_typed()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y::Vector{Float64}, z::Vector{Float64} = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_typed();
  3.887 ms (44 allocations: 30.52 MiB)

In general for tall and narrow tables it is often useful to use Tables.rowtable, Tables.columntable or Tables.namedtupleiterator for intermediate processing of data in a type-stable way.

Consider using delayed DataFrame creation technique#

also notice the difference in performance between copying vs non-copying data frame creation

function f1()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto, copycols=false) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f1a()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f2()
    x = Vector{Any}(undef, 100)
    for c in 1:length(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto, copycols=false) ## we delay creation of DataFrame after we have our job done
end

function f2a()
    x = Vector{Any}(undef, 100)
    for c in eachindex(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto) ## we delay creation of DataFrame after we have our job done
end

@btime f1();
@btime f1a();
@btime f2();
@btime f2a();
  28.362 ms (1949728 allocations: 37.40 MiB)
  28.251 ms (1950028 allocations: 45.03 MiB)
  1.156 ms (728 allocations: 7.66 MiB)
  1.607 ms (1028 allocations: 15.29 MiB)

You can add rows to a DataFrame in place and it is fast#

x = DataFrame(rand(10^6, 5), :auto)
y = DataFrame(transpose(1.0:5.0), :auto)
z = [1.0:5.0;]

@btime vcat($x, $y); ## creates a new DataFrame - slow
@btime append!($x, $y); ## in place - fast

x = DataFrame(rand(10^6, 5), :auto) ## reset to the same starting point
@btime push!($x, $z); ## add a single row in place - fast
  1.894 ms (212 allocations: 38.16 MiB)
  1.132 μs (29 allocations: 1.50 KiB)
  441.889 ns (16 allocations: 256 bytes)

Allowing missing as well as categorical slows down computations#

using StatsBase

function test(data) ## uses countmap function to test performance
    println(eltype(data))
    x = rand(data, 10^6)
    y = categorical(x)
    println(" raw:")
    @btime countmap($x)
    println(" categorical:")
    @btime countmap($y)
    nothing
end

test(1:10)
test([randstring() for i in 1:10])
test(allowmissing(1:10))
test(allowmissing([randstring() for i in 1:10]))
Int64
 raw:
  1.824 ms (8 allocations: 7.63 MiB)
 categorical:
  15.564 ms (1000004 allocations: 30.52 MiB)
String
 raw:
  20.521 ms (4 allocations: 448 bytes)
 categorical:
  31.713 ms (1000004 allocations: 30.52 MiB)
Union{Missing, Int64}
 raw:
  5.983 ms (4 allocations: 464 bytes)
 categorical:
  15.494 ms (1000004 allocations: 30.52 MiB)
Union{Missing, String}
 raw:
  19.281 ms (4 allocations: 448 bytes)
 categorical:
  29.505 ms (1000004 allocations: 30.52 MiB)

When aggregating use column selector and prefer integer, categorical, or pooled array grouping variable#

df = DataFrame(x=rand('a':'d', 10^7), y=1);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2499892 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2499867 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2499881b1
2499882b1
2499883b1
2499884b1
2499885b1
2499886b1
2499887b1
2499888b1
2499889b1
2499890b1
2499891b1
2499892b1

Last Group (2499142 rows): x = 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
2499117 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4c1
5c1
6c1
7c1
8c1
9c1
10c1
11c1
12c1
13c1
2499131c1
2499132c1
2499133c1
2499134c1
2499135c1
2499136c1
2499137c1
2499138c1
2499139c1
2499140c1
2499141c1
2499142c1

traditional syntax, slow

@btime combine(v -> sum(v.y), $gdf)
  17.054 ms (332 allocations: 19.09 MiB)
4×2 DataFrame
Rowxx1
CharInt64
1b2499892
2d2498228
3a2502738
4c2499142

use column selector

@btime combine($gdf, :y => sum)
  6.853 ms (198 allocations: 10.14 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1b2499892
2d2498228
3a2502738
4c2499142
transform!(df, :x => categorical => :x);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2502738 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'a'
2502713 rows omitted
Rowxy
Cat…Int64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2502727a1
2502728a1
2502729a1
2502730a1
2502731a1
2502732a1
2502733a1
2502734a1
2502735a1
2502736a1
2502737a1
2502738a1

Last Group (2498228 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'd'
2498203 rows omitted
Rowxy
Cat…Int64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2498217d1
2498218d1
2498219d1
2498220d1
2498221d1
2498222d1
2498223d1
2498224d1
2498225d1
2498226d1
2498227d1
2498228d1
@btime combine($gdf, :y => sum)
  6.883 ms (206 allocations: 10.62 KiB)
4×2 DataFrame
Rowxy_sum
Cat…Int64
1a2502738
2b2499892
3c2499142
4d2498228
transform!(df, :x => PooledArray{Char} => :x)
10000000×2 DataFrame
9999975 rows omitted
Rowxy
CharInt64
1b1
2d1
3a1
4d1
5b1
6c1
7b1
8d1
9d1
10c1
11d1
12a1
13d1
9999989b1
9999990b1
9999991c1
9999992a1
9999993a1
9999994a1
9999995c1
9999996c1
9999997d1
9999998c1
9999999c1
10000000b1
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2499892 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2499867 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2499881b1
2499882b1
2499883b1
2499884b1
2499885b1
2499886b1
2499887b1
2499888b1
2499889b1
2499890b1
2499891b1
2499892b1

Last Group (2499142 rows): x = 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
2499117 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4c1
5c1
6c1
7c1
8c1
9c1
10c1
11c1
12c1
13c1
2499131c1
2499132c1
2499133c1
2499134c1
2499135c1
2499136c1
2499137c1
2499138c1
2499139c1
2499140c1
2499141c1
2499142c1
@btime combine($gdf, :y => sum)
  6.877 ms (200 allocations: 10.20 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1b2499892
2d2498228
3a2502738
4c2499142

Use views instead of materializing a new DataFrame#

x = DataFrame(rand(100, 1000), :auto)
@btime $x[1:1, :]
  178.073 μs (3993 allocations: 159.03 KiB)
1×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.1341050.01198390.801180.298160.8756610.08495150.3192320.8568220.2722220.4061490.7932280.7736720.2025740.4444730.3595120.5302180.007735910.8967230.3135560.7373860.3985330.390160.9965160.2335240.2929580.3492680.4934180.07763960.6037610.9576920.3362150.6352260.2033850.867620.2070620.5256310.6048840.1626090.2664440.9239340.09972550.7442730.7826080.4001710.5247210.3625770.3311290.6190250.001126270.371210.3293280.5191820.7628610.7604480.826290.2674790.9183330.9635850.9109430.06449220.178050.1876190.5179150.1122020.5405780.5262560.8678590.7537480.9064890.8282520.6355650.3579520.9910870.4217940.6409390.5812890.475460.9862320.8106110.8638770.3423790.3147630.4711490.9079870.3680390.05857120.8475820.6784450.9788330.5433570.6518530.5966230.2738220.7786890.5247590.6159750.2221370.597170.2177850.583383
@btime $x[1, :]
  20.670 ns (0 allocations: 0 bytes)
DataFrameRow (1000 columns)
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.1341050.01198390.801180.298160.8756610.08495150.3192320.8568220.2722220.4061490.7932280.7736720.2025740.4444730.3595120.5302180.007735910.8967230.3135560.7373860.3985330.390160.9965160.2335240.2929580.3492680.4934180.07763960.6037610.9576920.3362150.6352260.2033850.867620.2070620.5256310.6048840.1626090.2664440.9239340.09972550.7442730.7826080.4001710.5247210.3625770.3311290.6190250.001126270.371210.3293280.5191820.7628610.7604480.826290.2674790.9183330.9635850.9109430.06449220.178050.1876190.5179150.1122020.5405780.5262560.8678590.7537480.9064890.8282520.6355650.3579520.9910870.4217940.6409390.5812890.475460.9862320.8106110.8638770.3423790.3147630.4711490.9079870.3680390.05857120.8475820.6784450.9788330.5433570.6518530.5966230.2738220.7786890.5247590.6159750.2221370.597170.2177850.583383
@btime view($x, 1:1, :)
  19.745 ns (0 allocations: 0 bytes)
1×1000 SubDataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.1341050.01198390.801180.298160.8756610.08495150.3192320.8568220.2722220.4061490.7932280.7736720.2025740.4444730.3595120.5302180.007735910.8967230.3135560.7373860.3985330.390160.9965160.2335240.2929580.3492680.4934180.07763960.6037610.9576920.3362150.6352260.2033850.867620.2070620.5256310.6048840.1626090.2664440.9239340.09972550.7442730.7826080.4001710.5247210.3625770.3311290.6190250.001126270.371210.3293280.5191820.7628610.7604480.826290.2674790.9183330.9635850.9109430.06449220.178050.1876190.5179150.1122020.5405780.5262560.8678590.7537480.9064890.8282520.6355650.3579520.9910870.4217940.6409390.5812890.475460.9862320.8106110.8638770.3423790.3147630.4711490.9079870.3680390.05857120.8475820.6784450.9788330.5433570.6518530.5966230.2738220.7786890.5247590.6159750.2221370.597170.2177850.583383
@btime $x[1:1, 1:20]
  3.753 μs (70 allocations: 3.09 KiB)
1×20 DataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.1341050.01198390.801180.298160.8756610.08495150.3192320.8568220.2722220.4061490.7932280.7736720.2025740.4444730.3595120.5302180.007735910.8967230.3135560.737386
@btime $x[1, 1:20]
  20.982 ns (0 allocations: 0 bytes)
DataFrameRow (20 columns)
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.1341050.01198390.801180.298160.8756610.08495150.3192320.8568220.2722220.4061490.7932280.7736720.2025740.4444730.3595120.5302180.007735910.8967230.3135560.737386
@btime view($x, 1:1, 1:20)
  21.283 ns (0 allocations: 0 bytes)
1×20 SubDataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.1341050.01198390.801180.298160.8756610.08495150.3192320.8568220.2722220.4061490.7932280.7736720.2025740.4444730.3595120.5302180.007735910.8967230.3135560.737386

This notebook was generated using Literate.jl.