Performance tips#

using DataFrames
using BenchmarkTools
using CategoricalArrays
using PooledArrays
using Random

Access by column number is faster than by name#

x = DataFrame(rand(5, 1000), :auto)
@btime $x[!, 500]; ## Faster
  2.785 ns (0 allocations: 0 bytes)
@btime $x.x500;  ## Slower
  11.743 ns (0 allocations: 0 bytes)

When working with data DataFrame use barrier functions or type annotation#

function f_bad() ## this function will be slow
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y, z = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_bad();
# if you run @code_warntype f_bad() then you notice
# that Julia does not know column types of `DataFrame`
  101.866 ms (5999022 allocations: 122.06 MiB)

solution 1 is to use barrier function (it should be possible to use it in almost any code) for the calculation. You will notice much less memopry allocations and faster performance.

function f_inner(y, z)
    p = 0.0
    for i in eachindex(y, z)
        p += y[i] * z[i]
    end
    p
end

function f_barrier()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    f_inner(x[!, 1], x[!, 2])
end

@btime f_barrier();
  4.647 ms (44 allocations: 30.52 MiB)

or use inbuilt function if possible

using LinearAlgebra

function f_inbuilt()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    dot(x[!, 1], x[!, 2])
end

@btime f_inbuilt();
  4.055 ms (44 allocations: 30.52 MiB)

solution 2 is to provide the types of extracted columns. However, there are cases in which you will not know these types.

function f_typed()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y::Vector{Float64}, z::Vector{Float64} = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_typed();
  4.665 ms (44 allocations: 30.52 MiB)

In general for tall and narrow tables it is often useful to use Tables.rowtable, Tables.columntable or Tables.namedtupleiterator for intermediate processing of data in a type-stable way.

Consider using delayed DataFrame creation technique#

also notice the difference in performance between copying vs non-copying data frame creation

function f1()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto, copycols=false) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f1a()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f2()
    x = Vector{Any}(undef, 100)
    for c in 1:length(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto, copycols=false) ## we delay creation of DataFrame after we have our job done
end

function f2a()
    x = Vector{Any}(undef, 100)
    for c in eachindex(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto) ## we delay creation of DataFrame after we have our job done
end

@btime f1();
@btime f1a();
@btime f2();
@btime f2a();
  26.756 ms (1949728 allocations: 37.40 MiB)
  28.565 ms (1950028 allocations: 45.03 MiB)
  1.200 ms (728 allocations: 7.66 MiB)
  1.865 ms (1028 allocations: 15.29 MiB)

You can add rows to a DataFrame in place and it is fast#

x = DataFrame(rand(10^6, 5), :auto)
y = DataFrame(transpose(1.0:5.0), :auto)
z = [1.0:5.0;]

@btime vcat($x, $y); ## creates a new DataFrame - slow
@btime append!($x, $y); ## in place - fast

x = DataFrame(rand(10^6, 5), :auto) ## reset to the same starting point
@btime push!($x, $z); ## add a single row in place - fast
  2.517 ms (213 allocations: 38.16 MiB)
  1.084 μs (30 allocations: 1.52 KiB)
  411.472 ns (16 allocations: 256 bytes)

Allowing missing as well as categorical slows down computations#

using StatsBase

function test(data) ## uses countmap function to test performance
    println(eltype(data))
    x = rand(data, 10^6)
    y = categorical(x)
    println(" raw:")
    @btime countmap($x)
    println(" categorical:")
    @btime countmap($y)
    nothing
end

test(1:10)
test([randstring() for i in 1:10])
test(allowmissing(1:10))
test(allowmissing([randstring() for i in 1:10]))
Int64
 raw:
  1.891 ms (8 allocations: 7.63 MiB)
 categorical:
  10.152 ms (4 allocations: 576 bytes)
String
 raw:
  18.666 ms (4 allocations: 448 bytes)
 categorical:
  22.295 ms (4 allocations: 576 bytes)
Union{Missing, Int64}
 raw:
  7.176 ms (4 allocations: 464 bytes)
 categorical:
  21.785 ms (1000004 allocations: 30.52 MiB)
Union{Missing, String}
 raw:
  18.502 ms (4 allocations: 448 bytes)
 categorical:
  34.761 ms (1000004 allocations: 30.52 MiB)

When aggregating use column selector and prefer integer, categorical, or pooled array grouping variable#

df = DataFrame(x=rand('a':'d', 10^7), y=1);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500245 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2500220 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2500234b1
2500235b1
2500236b1
2500237b1
2500238b1
2500239b1
2500240b1
2500241b1
2500242b1
2500243b1
2500244b1
2500245b1

Last Group (2501679 rows): x = 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
2501654 rows omitted
Rowxy
CharInt64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2501668d1
2501669d1
2501670d1
2501671d1
2501672d1
2501673d1
2501674d1
2501675d1
2501676d1
2501677d1
2501678d1
2501679d1

traditional syntax, slow

@btime combine(v -> sum(v.y), $gdf)
  17.486 ms (333 allocations: 19.09 MiB)
4×2 DataFrame
Rowxx1
CharInt64
1b2500245
2c2500332
3a2497744
4d2501679

use column selector

@btime combine($gdf, :y => sum)
  6.963 ms (199 allocations: 9.41 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1b2500245
2c2500332
3a2497744
4d2501679
transform!(df, :x => categorical => :x);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2497744 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'a'
2497719 rows omitted
Rowxy
Cat…Int64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2497733a1
2497734a1
2497735a1
2497736a1
2497737a1
2497738a1
2497739a1
2497740a1
2497741a1
2497742a1
2497743a1
2497744a1

Last Group (2501679 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'd'
2501654 rows omitted
Rowxy
Cat…Int64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2501668d1
2501669d1
2501670d1
2501671d1
2501672d1
2501673d1
2501674d1
2501675d1
2501676d1
2501677d1
2501678d1
2501679d1
@btime combine($gdf, :y => sum)
  7.006 ms (209 allocations: 9.98 KiB)
4×2 DataFrame
Rowxy_sum
Cat…Int64
1a2497744
2b2500245
3c2500332
4d2501679
transform!(df, :x => PooledArray{Char} => :x)
10000000×2 DataFrame
9999975 rows omitted
Rowxy
CharInt64
1b1
2c1
3a1
4b1
5d1
6d1
7b1
8a1
9b1
10c1
11b1
12a1
13d1
9999989c1
9999990b1
9999991d1
9999992b1
9999993d1
9999994d1
9999995d1
9999996a1
9999997d1
9999998c1
9999999d1
10000000d1
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500245 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2500220 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2500234b1
2500235b1
2500236b1
2500237b1
2500238b1
2500239b1
2500240b1
2500241b1
2500242b1
2500243b1
2500244b1
2500245b1

Last Group (2501679 rows): x = 'd': ASCII/Unicode U+0064 (category Ll: Letter, lowercase)
2501654 rows omitted
Rowxy
CharInt64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2501668d1
2501669d1
2501670d1
2501671d1
2501672d1
2501673d1
2501674d1
2501675d1
2501676d1
2501677d1
2501678d1
2501679d1
@btime combine($gdf, :y => sum)
  7.031 ms (201 allocations: 9.47 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1b2500245
2c2500332
3a2497744
4d2501679

Use views instead of materializing a new DataFrame#

x = DataFrame(rand(100, 1000), :auto)
@btime $x[1:1, :]
  463.867 μs (3015 allocations: 143.79 KiB)
1×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.9342630.6817070.9163540.452780.1983250.7676020.1831580.1189340.5487640.6389470.3367270.8804180.979690.09366760.2018780.06597460.7656550.732990.1166820.5480670.2419010.129750.06659060.08269190.1311930.2510290.5056110.4790150.7756060.1740390.7949760.2436690.3201480.2031040.8240430.2673150.7127350.274030.05564810.6824530.3789920.006396380.8891120.04584520.5151940.3198120.3613360.1354190.8332530.150260.6784030.1435590.7488480.6252540.3702490.2117140.280720.422190.04693830.1189140.1057840.9589310.5799230.9485240.2591390.9732520.5583090.4401890.8064350.3732110.143540.8989670.5433270.9429330.2509590.3589540.9945010.5222740.7963370.4228560.3515370.7944640.816330.3497480.6849690.3047870.6008080.04059320.7795060.6007790.07952340.9907030.7477540.5258230.7854620.9913450.6221940.1745850.07117770.55187
@btime $x[1, :]
  21.908 ns (0 allocations: 0 bytes)
DataFrameRow (1000 columns)
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.9342630.6817070.9163540.452780.1983250.7676020.1831580.1189340.5487640.6389470.3367270.8804180.979690.09366760.2018780.06597460.7656550.732990.1166820.5480670.2419010.129750.06659060.08269190.1311930.2510290.5056110.4790150.7756060.1740390.7949760.2436690.3201480.2031040.8240430.2673150.7127350.274030.05564810.6824530.3789920.006396380.8891120.04584520.5151940.3198120.3613360.1354190.8332530.150260.6784030.1435590.7488480.6252540.3702490.2117140.280720.422190.04693830.1189140.1057840.9589310.5799230.9485240.2591390.9732520.5583090.4401890.8064350.3732110.143540.8989670.5433270.9429330.2509590.3589540.9945010.5222740.7963370.4228560.3515370.7944640.816330.3497480.6849690.3047870.6008080.04059320.7795060.6007790.07952340.9907030.7477540.5258230.7854620.9913450.6221940.1745850.07117770.55187
@btime view($x, 1:1, :)
  22.067 ns (0 allocations: 0 bytes)
1×1000 SubDataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.9342630.6817070.9163540.452780.1983250.7676020.1831580.1189340.5487640.6389470.3367270.8804180.979690.09366760.2018780.06597460.7656550.732990.1166820.5480670.2419010.129750.06659060.08269190.1311930.2510290.5056110.4790150.7756060.1740390.7949760.2436690.3201480.2031040.8240430.2673150.7127350.274030.05564810.6824530.3789920.006396380.8891120.04584520.5151940.3198120.3613360.1354190.8332530.150260.6784030.1435590.7488480.6252540.3702490.2117140.280720.422190.04693830.1189140.1057840.9589310.5799230.9485240.2591390.9732520.5583090.4401890.8064350.3732110.143540.8989670.5433270.9429330.2509590.3589540.9945010.5222740.7963370.4228560.3515370.7944640.816330.3497480.6849690.3047870.6008080.04059320.7795060.6007790.07952340.9907030.7477540.5258230.7854620.9913450.6221940.1745850.07117770.55187
@btime $x[1:1, 1:20]
  9.738 μs (70 allocations: 3.09 KiB)
1×20 DataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.9342630.6817070.9163540.452780.1983250.7676020.1831580.1189340.5487640.6389470.3367270.8804180.979690.09366760.2018780.06597460.7656550.732990.1166820.548067
@btime $x[1, 1:20]
  24.750 ns (0 allocations: 0 bytes)
DataFrameRow (20 columns)
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.9342630.6817070.9163540.452780.1983250.7676020.1831580.1189340.5487640.6389470.3367270.8804180.979690.09366760.2018780.06597460.7656550.732990.1166820.548067
@btime view($x, 1:1, 1:20)
  26.471 ns (0 allocations: 0 bytes)
1×20 SubDataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.9342630.6817070.9163540.452780.1983250.7676020.1831580.1189340.5487640.6389470.3367270.8804180.979690.09366760.2018780.06597460.7656550.732990.1166820.548067

This notebook was generated using Literate.jl.