Performance tips#

using DataFrames
using BenchmarkTools
using CategoricalArrays
using PooledArrays
using Random

Access by column number is faster than by name#

x = DataFrame(rand(5, 1000), :auto)
@btime $x[!, 500]; ## Faster
  3.095 ns (0 allocations: 0 bytes)
@btime $x.x500;  ## Slower
  11.784 ns (0 allocations: 0 bytes)

When working with data DataFrame use barrier functions or type annotation#

function f_bad() ## this function will be slow
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y, z = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_bad();
# if you run @code_warntype f_bad() then you notice
# that Julia does not know column types of `DataFrame`
  101.216 ms (5999022 allocations: 122.06 MiB)

solution 1 is to use barrier function (it should be possible to use it in almost any code) for the calculation. You will notice much less memopry allocations and faster performance.

function f_inner(y, z)
    p = 0.0
    for i in eachindex(y, z)
        p += y[i] * z[i]
    end
    p
end

function f_barrier()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    f_inner(x[!, 1], x[!, 2])
end

@btime f_barrier();
  4.827 ms (44 allocations: 30.52 MiB)

or use inbuilt function if possible

using LinearAlgebra

function f_inbuilt()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    dot(x[!, 1], x[!, 2])
end

@btime f_inbuilt();
  4.249 ms (44 allocations: 30.52 MiB)

solution 2 is to provide the types of extracted columns. However, there are cases in which you will not know these types.

function f_typed()
    Random.seed!(1)
    x = DataFrame(rand(1000000, 2), :auto)
    y::Vector{Float64}, z::Vector{Float64} = x[!, 1], x[!, 2]
    p = 0.0
    for i in 1:nrow(x)
        p += y[i] * z[i]
    end
    p
end

@btime f_typed();
  4.804 ms (44 allocations: 30.52 MiB)

In general for tall and narrow tables it is often useful to use Tables.rowtable, Tables.columntable or Tables.namedtupleiterator for intermediate processing of data in a type-stable way.

Consider using delayed DataFrame creation technique#

also notice the difference in performance between copying vs non-copying data frame creation

function f1()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto, copycols=false) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f1a()
    x = DataFrame([Vector{Float64}(undef, 10^4) for i in 1:100], :auto) ## we work with a DataFrame directly
    for c in 1:ncol(x)
        d = x[!, c]
        for r in 1:nrow(x)
            d[r] = rand()
        end
    end
    x
end

function f2()
    x = Vector{Any}(undef, 100)
    for c in 1:length(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto, copycols=false) ## we delay creation of DataFrame after we have our job done
end

function f2a()
    x = Vector{Any}(undef, 100)
    for c in eachindex(x)
        d = Vector{Float64}(undef, 10^4)
        for r in eachindex(d)
            d[r] = rand()
        end
        x[c] = d
    end
    DataFrame(x, :auto) ## we delay creation of DataFrame after we have our job done
end

@btime f1();
@btime f1a();
@btime f2();
@btime f2a();
  27.657 ms (1949728 allocations: 37.40 MiB)
  28.317 ms (1950028 allocations: 45.03 MiB)
  1.187 ms (728 allocations: 7.66 MiB)
  1.661 ms (1028 allocations: 15.29 MiB)

You can add rows to a DataFrame in place and it is fast#

x = DataFrame(rand(10^6, 5), :auto)
y = DataFrame(transpose(1.0:5.0), :auto)
z = [1.0:5.0;]

@btime vcat($x, $y); ## creates a new DataFrame - slow
@btime append!($x, $y); ## in place - fast

x = DataFrame(rand(10^6, 5), :auto) ## reset to the same starting point
@btime push!($x, $z); ## add a single row in place - fast
  2.800 ms (213 allocations: 38.16 MiB)
  1.098 μs (30 allocations: 1.52 KiB)
  433.182 ns (16 allocations: 256 bytes)

Allowing missing as well as categorical slows down computations#

using StatsBase

function test(data) ## uses countmap function to test performance
    println(eltype(data))
    x = rand(data, 10^6)
    y = categorical(x)
    println(" raw:")
    @btime countmap($x)
    println(" categorical:")
    @btime countmap($y)
    nothing
end

test(1:10)
test([randstring() for i in 1:10])
test(allowmissing(1:10))
test(allowmissing([randstring() for i in 1:10]))
Int64
 raw:
  1.973 ms (8 allocations: 7.63 MiB)
 categorical:
  9.872 ms (4 allocations: 576 bytes)
String
 raw:
  17.873 ms (4 allocations: 448 bytes)
 categorical:
  21.670 ms (4 allocations: 576 bytes)
Union{Missing, Int64}
 raw:
  7.171 ms (4 allocations: 464 bytes)
 categorical:
  21.828 ms (1000004 allocations: 30.52 MiB)
Union{Missing, String}
 raw:
  19.383 ms (4 allocations: 448 bytes)
 categorical:
  35.430 ms (1000004 allocations: 30.52 MiB)

When aggregating use column selector and prefer integer, categorical, or pooled array grouping variable#

df = DataFrame(x=rand('a':'d', 10^7), y=1);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500095 rows): x = 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
2500070 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4c1
5c1
6c1
7c1
8c1
9c1
10c1
11c1
12c1
13c1
2500084c1
2500085c1
2500086c1
2500087c1
2500088c1
2500089c1
2500090c1
2500091c1
2500092c1
2500093c1
2500094c1
2500095c1

Last Group (2499727 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2499702 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2499716b1
2499717b1
2499718b1
2499719b1
2499720b1
2499721b1
2499722b1
2499723b1
2499724b1
2499725b1
2499726b1
2499727b1

traditional syntax, slow

@btime combine(v -> sum(v.y), $gdf)
  19.492 ms (333 allocations: 19.09 MiB)
4×2 DataFrame
Rowxx1
CharInt64
1c2500095
2d2500238
3a2499940
4b2499727

use column selector

@btime combine($gdf, :y => sum)
  7.293 ms (199 allocations: 9.41 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1c2500095
2d2500238
3a2499940
4b2499727
transform!(df, :x => categorical => :x);
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2499940 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'a'
2499915 rows omitted
Rowxy
Cat…Int64
1a1
2a1
3a1
4a1
5a1
6a1
7a1
8a1
9a1
10a1
11a1
12a1
13a1
2499929a1
2499930a1
2499931a1
2499932a1
2499933a1
2499934a1
2499935a1
2499936a1
2499937a1
2499938a1
2499939a1
2499940a1

Last Group (2500238 rows): x = CategoricalArrays.CategoricalValue{Char, UInt32} 'd'
2500213 rows omitted
Rowxy
Cat…Int64
1d1
2d1
3d1
4d1
5d1
6d1
7d1
8d1
9d1
10d1
11d1
12d1
13d1
2500227d1
2500228d1
2500229d1
2500230d1
2500231d1
2500232d1
2500233d1
2500234d1
2500235d1
2500236d1
2500237d1
2500238d1
@btime combine($gdf, :y => sum)
  7.043 ms (209 allocations: 9.98 KiB)
4×2 DataFrame
Rowxy_sum
Cat…Int64
1a2499940
2b2499727
3c2500095
4d2500238
transform!(df, :x => PooledArray{Char} => :x)
10000000×2 DataFrame
9999975 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4d1
5d1
6a1
7c1
8c1
9a1
10c1
11b1
12c1
13c1
9999989c1
9999990b1
9999991a1
9999992b1
9999993a1
9999994c1
9999995a1
9999996d1
9999997d1
9999998d1
9999999c1
10000000d1
gdf = groupby(df, :x)

GroupedDataFrame with 4 groups based on key: x

First Group (2500095 rows): x = 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
2500070 rows omitted
Rowxy
CharInt64
1c1
2c1
3c1
4c1
5c1
6c1
7c1
8c1
9c1
10c1
11c1
12c1
13c1
2500084c1
2500085c1
2500086c1
2500087c1
2500088c1
2500089c1
2500090c1
2500091c1
2500092c1
2500093c1
2500094c1
2500095c1

Last Group (2499727 rows): x = 'b': ASCII/Unicode U+0062 (category Ll: Letter, lowercase)
2499702 rows omitted
Rowxy
CharInt64
1b1
2b1
3b1
4b1
5b1
6b1
7b1
8b1
9b1
10b1
11b1
12b1
13b1
2499716b1
2499717b1
2499718b1
2499719b1
2499720b1
2499721b1
2499722b1
2499723b1
2499724b1
2499725b1
2499726b1
2499727b1
@btime combine($gdf, :y => sum)
  7.131 ms (201 allocations: 9.47 KiB)
4×2 DataFrame
Rowxy_sum
CharInt64
1c2500095
2d2500238
3a2499940
4b2499727

Use views instead of materializing a new DataFrame#

x = DataFrame(rand(100, 1000), :auto)
@btime $x[1:1, :]
  457.333 μs (3015 allocations: 143.79 KiB)
1×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.007025990.21760.9264130.1087550.7913380.2463840.02100930.4679550.1893390.5189610.9230050.1002740.8732510.6534080.739560.3410820.09318130.3610370.9952870.3668030.9687340.7219080.02908380.988050.4806130.2815710.6193720.5692120.3658140.3206110.9928180.4329760.7987110.6548110.01792480.3776360.0606620.8110850.1624390.8240440.03842660.1485280.6903030.6428990.7390170.7431750.9892540.9153990.2852750.3320760.9070080.05852420.9444360.5345310.2383510.5811520.8473310.4734680.6607490.6715660.003083330.9992620.4194110.7928820.6350050.001747560.6204370.8684130.486250.4457340.5365890.3086610.6500380.0550130.2366680.7803030.9825020.8605980.5579160.06446490.05533240.7194850.4878470.9676850.154970.3314710.1722070.8076410.8955820.531820.3632530.8925670.4101050.4785030.4604070.301060.04302020.7992390.5534830.653734
@btime $x[1, :]
  17.276 ns (0 allocations: 0 bytes)
DataFrameRow (1000 columns)
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.007025990.21760.9264130.1087550.7913380.2463840.02100930.4679550.1893390.5189610.9230050.1002740.8732510.6534080.739560.3410820.09318130.3610370.9952870.3668030.9687340.7219080.02908380.988050.4806130.2815710.6193720.5692120.3658140.3206110.9928180.4329760.7987110.6548110.01792480.3776360.0606620.8110850.1624390.8240440.03842660.1485280.6903030.6428990.7390170.7431750.9892540.9153990.2852750.3320760.9070080.05852420.9444360.5345310.2383510.5811520.8473310.4734680.6607490.6715660.003083330.9992620.4194110.7928820.6350050.001747560.6204370.8684130.486250.4457340.5365890.3086610.6500380.0550130.2366680.7803030.9825020.8605980.5579160.06446490.05533240.7194850.4878470.9676850.154970.3314710.1722070.8076410.8955820.531820.3632530.8925670.4101050.4785030.4604070.301060.04302020.7992390.5534830.653734
@btime view($x, 1:1, :)
  18.820 ns (0 allocations: 0 bytes)
1×1000 SubDataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.007025990.21760.9264130.1087550.7913380.2463840.02100930.4679550.1893390.5189610.9230050.1002740.8732510.6534080.739560.3410820.09318130.3610370.9952870.3668030.9687340.7219080.02908380.988050.4806130.2815710.6193720.5692120.3658140.3206110.9928180.4329760.7987110.6548110.01792480.3776360.0606620.8110850.1624390.8240440.03842660.1485280.6903030.6428990.7390170.7431750.9892540.9153990.2852750.3320760.9070080.05852420.9444360.5345310.2383510.5811520.8473310.4734680.6607490.6715660.003083330.9992620.4194110.7928820.6350050.001747560.6204370.8684130.486250.4457340.5365890.3086610.6500380.0550130.2366680.7803030.9825020.8605980.5579160.06446490.05533240.7194850.4878470.9676850.154970.3314710.1722070.8076410.8955820.531820.3632530.8925670.4101050.4785030.4604070.301060.04302020.7992390.5534830.653734
@btime $x[1:1, 1:20]
  9.669 μs (70 allocations: 3.09 KiB)
1×20 DataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.007025990.21760.9264130.1087550.7913380.2463840.02100930.4679550.1893390.5189610.9230050.1002740.8732510.6534080.739560.3410820.09318130.3610370.9952870.366803
@btime $x[1, 1:20]
  20.571 ns (0 allocations: 0 bytes)
DataFrameRow (20 columns)
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.007025990.21760.9264130.1087550.7913380.2463840.02100930.4679550.1893390.5189610.9230050.1002740.8732510.6534080.739560.3410820.09318130.3610370.9952870.366803
@btime view($x, 1:1, 1:20)
  20.550 ns (0 allocations: 0 bytes)
1×20 SubDataFrame
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20
Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64Float64
10.007025990.21760.9264130.1087550.7913380.2463840.02100930.4679550.1893390.5189610.9230050.1002740.8732510.6534080.739560.3410820.09318130.3610370.9952870.366803

This notebook was generated using Literate.jl.