Transformation to DataFrames#
Split-apply-combine
using DataFrames
Grouping a data frame#
groupby
x = DataFrame(id=[1, 2, 3, 4, 1, 2, 3, 4], id2=[1, 2, 1, 2, 1, 2, 1, 2], v=rand(8))
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 2 | 2 | 0.0764892 |
3 | 3 | 1 | 0.620511 |
4 | 4 | 2 | 0.0601085 |
5 | 1 | 1 | 0.162512 |
6 | 2 | 2 | 0.318162 |
7 | 3 | 1 | 0.407531 |
8 | 4 | 2 | 0.851718 |
groupby(x, :id)
GroupedDataFrame with 4 groups based on key: id
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 1 | 1 | 0.162512 |
⋮
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 4 | 2 | 0.0601085 |
2 | 4 | 2 | 0.851718 |
groupby(x, [])
GroupedDataFrame with 1 group based on key:
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 2 | 2 | 0.0764892 |
3 | 3 | 1 | 0.620511 |
4 | 4 | 2 | 0.0601085 |
5 | 1 | 1 | 0.162512 |
6 | 2 | 2 | 0.318162 |
7 | 3 | 1 | 0.407531 |
8 | 4 | 2 | 0.851718 |
gx2 = groupby(x, [:id, :id2])
GroupedDataFrame with 4 groups based on keys: id, id2
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 1 | 1 | 0.162512 |
⋮
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 4 | 2 | 0.0601085 |
2 | 4 | 2 | 0.851718 |
get the parent DataFrame
parent(gx2)
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 2 | 2 | 0.0764892 |
3 | 3 | 1 | 0.620511 |
4 | 4 | 2 | 0.0601085 |
5 | 1 | 1 | 0.162512 |
6 | 2 | 2 | 0.318162 |
7 | 3 | 1 | 0.407531 |
8 | 4 | 2 | 0.851718 |
back to the DataFrame, but in a different order of rows than the original
vcat(gx2...)
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 1 | 1 | 0.162512 |
3 | 2 | 2 | 0.0764892 |
4 | 2 | 2 | 0.318162 |
5 | 3 | 1 | 0.620511 |
6 | 3 | 1 | 0.407531 |
7 | 4 | 2 | 0.0601085 |
8 | 4 | 2 | 0.851718 |
the same as above
DataFrame(gx2)
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 1 | 1 | 0.162512 |
3 | 2 | 2 | 0.0764892 |
4 | 2 | 2 | 0.318162 |
5 | 3 | 1 | 0.620511 |
6 | 3 | 1 | 0.407531 |
7 | 4 | 2 | 0.0601085 |
8 | 4 | 2 | 0.851718 |
drop grouping columns when creating a data frame
DataFrame(gx2, keepkeys=false)
Row | v |
---|---|
Float64 | |
1 | 0.274977 |
2 | 0.162512 |
3 | 0.0764892 |
4 | 0.318162 |
5 | 0.620511 |
6 | 0.407531 |
7 | 0.0601085 |
8 | 0.851718 |
vector of names of grouping variables
groupcols(gx2)
2-element Vector{Symbol}:
:id
:id2
and non-grouping variables
valuecols(gx2)
1-element Vector{Symbol}:
:v
group indices in parent(gx2)
groupindices(gx2)
8-element Vector{Union{Missing, Int64}}:
1
2
3
4
1
2
3
4
kgx2 = keys(gx2)
4-element DataFrames.GroupKeys{DataFrames.GroupedDataFrame{DataFrames.DataFrame}}:
GroupKey: (id = 1, id2 = 1)
GroupKey: (id = 2, id2 = 2)
GroupKey: (id = 3, id2 = 1)
GroupKey: (id = 4, id2 = 2)
You can index into a GroupedDataFrame
like to a vector or to a dictionary. The second form accepts GroupKey
, NamedTuple
or a Tuple
.
gx2
GroupedDataFrame with 4 groups based on keys: id, id2
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 1 | 1 | 0.274977 |
2 | 1 | 1 | 0.162512 |
⋮
Row | id | id2 | v |
---|---|---|---|
Int64 | Int64 | Float64 | |
1 | 4 | 2 | 0.0601085 |
2 | 4 | 2 | 0.851718 |
k = keys(gx2)[1]
GroupKey: (id = 1, id2 = 1)
ntk = NamedTuple(k)
(id = 1, id2 = 1)
tk = Tuple(k)
(1, 1)
the operations below produce the same result and are proformant
gx2[1], gx2[k], gx2[ntk], gx2[tk]
(2×3 SubDataFrame
Row │ id id2 v
│ Int64 Int64 Float64
─────┼────────────────────────
1 │ 1 1 0.274977
2 │ 1 1 0.162512, 2×3 SubDataFrame
Row │ id id2 v
│ Int64 Int64 Float64
─────┼────────────────────────
1 │ 1 1 0.274977
2 │ 1 1 0.162512, 2×3 SubDataFrame
Row │ id id2 v
│ Int64 Int64 Float64
─────┼────────────────────────
1 │ 1 1 0.274977
2 │ 1 1 0.162512, 2×3 SubDataFrame
Row │ id id2 v
│ Int64 Int64 Float64
─────┼────────────────────────
1 │ 1 1 0.274977
2 │ 1 1 0.162512)
handling missing values
x = DataFrame(id=[missing, 5, 1, 3, missing], x=1:5)
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | missing | 1 |
2 | 5 | 2 |
3 | 1 | 3 |
4 | 3 | 4 |
5 | missing | 5 |
by default groups include missing values and their order is not guaranteed
groupby(x, :id)
GroupedDataFrame with 4 groups based on key: id
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | 1 | 3 |
⋮
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | missing | 1 |
2 | missing | 5 |
but we can change it; now they are sorted
groupby(x, :id, sort=true, skipmissing=true)
GroupedDataFrame with 3 groups based on key: id
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | 1 | 3 |
⋮
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | 5 | 2 |
and now they are in the order they appear in the source data frame
groupby(x, :id, sort=false)
GroupedDataFrame with 4 groups based on key: id
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | missing | 1 |
2 | missing | 5 |
⋮
Row | id | x |
---|---|---|
Int64? | Int64 | |
1 | 3 | 4 |
Performing transformations#
by group using combine, select, select!, transform, and transform!
using Statistics
using Chain
x = DataFrame(id=rand('a':'d', 100), v=rand(100))
Row | id | v |
---|---|---|
Char | Float64 | |
1 | b | 0.453848 |
2 | c | 0.909895 |
3 | d | 0.703891 |
4 | b | 0.027346 |
5 | d | 0.248954 |
6 | d | 0.223325 |
7 | a | 0.632575 |
8 | c | 0.0887604 |
9 | a | 0.56193 |
10 | a | 0.874694 |
11 | c | 0.192252 |
12 | d | 0.611955 |
13 | a | 0.63133 |
⋮ | ⋮ | ⋮ |
89 | c | 0.582991 |
90 | d | 0.456848 |
91 | b | 0.892767 |
92 | c | 0.622906 |
93 | a | 0.492163 |
94 | d | 0.459594 |
95 | b | 0.923333 |
96 | d | 0.956767 |
97 | a | 0.344608 |
98 | d | 0.374078 |
99 | a | 0.597576 |
100 | b | 0.880164 |
apply a function to each group of a data frame combine keeps as many rows as are returned from the function
@chain x begin
groupby(:id)
combine(:v => mean)
end
Row | id | v_mean |
---|---|---|
Char | Float64 | |
1 | b | 0.549499 |
2 | c | 0.551201 |
3 | d | 0.501363 |
4 | a | 0.480635 |
x.id2 = axes(x, 1)
Base.OneTo(100)
Select and transform keep as many rows as are in the source data frame and in correct order. Additionally, transform keeps all columns from the source.
@chain x begin
groupby(:id)
transform(:v => mean)
end
Row | id | v | id2 | v_mean |
---|---|---|---|---|
Char | Float64 | Int64 | Float64 | |
1 | b | 0.453848 | 1 | 0.549499 |
2 | c | 0.909895 | 2 | 0.551201 |
3 | d | 0.703891 | 3 | 0.501363 |
4 | b | 0.027346 | 4 | 0.549499 |
5 | d | 0.248954 | 5 | 0.501363 |
6 | d | 0.223325 | 6 | 0.501363 |
7 | a | 0.632575 | 7 | 0.480635 |
8 | c | 0.0887604 | 8 | 0.551201 |
9 | a | 0.56193 | 9 | 0.480635 |
10 | a | 0.874694 | 10 | 0.480635 |
11 | c | 0.192252 | 11 | 0.551201 |
12 | d | 0.611955 | 12 | 0.501363 |
13 | a | 0.63133 | 13 | 0.480635 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
89 | c | 0.582991 | 89 | 0.551201 |
90 | d | 0.456848 | 90 | 0.501363 |
91 | b | 0.892767 | 91 | 0.549499 |
92 | c | 0.622906 | 92 | 0.551201 |
93 | a | 0.492163 | 93 | 0.480635 |
94 | d | 0.459594 | 94 | 0.501363 |
95 | b | 0.923333 | 95 | 0.549499 |
96 | d | 0.956767 | 96 | 0.501363 |
97 | a | 0.344608 | 97 | 0.480635 |
98 | d | 0.374078 | 98 | 0.501363 |
99 | a | 0.597576 | 99 | 0.480635 |
100 | b | 0.880164 | 100 | 0.549499 |
note that combine reorders rows by group of GroupedDataFrame
@chain x begin
groupby(:id)
combine(:id2, :v => mean)
end
Row | id | id2 | v_mean |
---|---|---|---|
Char | Int64 | Float64 | |
1 | b | 1 | 0.549499 |
2 | b | 4 | 0.549499 |
3 | b | 14 | 0.549499 |
4 | b | 17 | 0.549499 |
5 | b | 20 | 0.549499 |
6 | b | 24 | 0.549499 |
7 | b | 27 | 0.549499 |
8 | b | 29 | 0.549499 |
9 | b | 30 | 0.549499 |
10 | b | 33 | 0.549499 |
11 | b | 34 | 0.549499 |
12 | b | 39 | 0.549499 |
13 | b | 47 | 0.549499 |
⋮ | ⋮ | ⋮ | ⋮ |
89 | a | 41 | 0.480635 |
90 | a | 50 | 0.480635 |
91 | a | 51 | 0.480635 |
92 | a | 54 | 0.480635 |
93 | a | 61 | 0.480635 |
94 | a | 63 | 0.480635 |
95 | a | 76 | 0.480635 |
96 | a | 77 | 0.480635 |
97 | a | 79 | 0.480635 |
98 | a | 93 | 0.480635 |
99 | a | 97 | 0.480635 |
100 | a | 99 | 0.480635 |
we give a custom name for the result column
@chain x begin
groupby(:id)
combine(:v => mean => :res)
end
Row | id | res |
---|---|---|
Char | Float64 | |
1 | b | 0.549499 |
2 | c | 0.551201 |
3 | d | 0.501363 |
4 | a | 0.480635 |
you can have multiple operations
@chain x begin
groupby(:id)
combine(:v => mean => :res1, :v => sum => :res2, nrow => :n)
end
Row | id | res1 | res2 | n |
---|---|---|---|---|
Char | Float64 | Float64 | Int64 | |
1 | b | 0.549499 | 13.188 | 24 |
2 | c | 0.551201 | 14.3312 | 26 |
3 | d | 0.501363 | 15.0409 | 30 |
4 | a | 0.480635 | 9.6127 | 20 |
Additional notes:
select!
andtransform!
perform operations in-placeThe general syntax for transformation is
source_columns => function => target_column
if you pass multiple columns to a function they are treated as positional arguments
ByRow
andAsTable
work exactly like discussed for operations on data frames in 05_columns.ipynbyou can automatically groupby again the result of
combine
,select
etc. by passingungroup=false
keyword argument to themsimilarly
keepkeys
keyword argument allows you to drop grouping columns from the resulting data frame
It is also allowed to pass a function to all these functions (also - as a special case, as a first argument). In this case the return value can be a table. In particular it allows for an easy dropping of groups if you return an empty table from the function.
If you pass a function you can use a do
block syntax. In case of passing a function it gets a SubDataFrame
as its argument.
Here is an example:
combine(groupby(x, :id)) do sdf
n = nrow(sdf)
n < 25 ? DataFrame() : DataFrame(n=n) ## drop groups with low number of rows
end
Row | id | n |
---|---|---|
Char | Int64 | |
1 | c | 26 |
2 | d | 30 |
You can also produce multiple columns in a single operation:
df = DataFrame(id=[1, 1, 2, 2], val=[1, 2, 3, 4])
Row | id | val |
---|---|---|
Int64 | Int64 | |
1 | 1 | 1 |
2 | 1 | 2 |
3 | 2 | 3 |
4 | 2 | 4 |
@chain df begin
groupby(:id)
combine(:val => (x -> [x]) => AsTable)
end
Row | id | x1 | x2 |
---|---|---|---|
Int64 | Int64 | Int64 | |
1 | 1 | 1 | 2 |
2 | 2 | 3 | 4 |
@chain df begin
groupby(:id)
combine(:val => (x -> [x]) => [:c1, :c2])
end
Row | id | c1 | c2 |
---|---|---|---|
Int64 | Int64 | Int64 | |
1 | 1 | 1 | 2 |
2 | 2 | 3 | 4 |
It is easy to unnest the column into multiple columns,
df = DataFrame(a=[(p=1, q=2), (p=3, q=4)])
select(df, :a => AsTable)
Row | p | q |
---|---|---|
Int64 | Int64 | |
1 | 1 | 2 |
2 | 3 | 4 |
automatic column names generated
df = DataFrame(a=[[1, 2], [3, 4]])
select(df, :a => AsTable)
Row | x1 | x2 |
---|---|---|
Int64 | Int64 | |
1 | 1 | 2 |
2 | 3 | 4 |
custom column names generated
select(df, :a => [:C1, :C2])
Row | C1 | C2 |
---|---|---|
Int64 | Int64 | |
1 | 1 | 2 |
2 | 3 | 4 |
Finally, observe that one can conveniently apply multiple transformations using broadcasting:
df = DataFrame(id=repeat(1:10, 10), x1=1:100, x2=101:200)
Row | id | x1 | x2 |
---|---|---|---|
Int64 | Int64 | Int64 | |
1 | 1 | 1 | 101 |
2 | 2 | 2 | 102 |
3 | 3 | 3 | 103 |
4 | 4 | 4 | 104 |
5 | 5 | 5 | 105 |
6 | 6 | 6 | 106 |
7 | 7 | 7 | 107 |
8 | 8 | 8 | 108 |
9 | 9 | 9 | 109 |
10 | 10 | 10 | 110 |
11 | 1 | 11 | 111 |
12 | 2 | 12 | 112 |
13 | 3 | 13 | 113 |
⋮ | ⋮ | ⋮ | ⋮ |
89 | 9 | 89 | 189 |
90 | 10 | 90 | 190 |
91 | 1 | 91 | 191 |
92 | 2 | 92 | 192 |
93 | 3 | 93 | 193 |
94 | 4 | 94 | 194 |
95 | 5 | 95 | 195 |
96 | 6 | 96 | 196 |
97 | 7 | 97 | 197 |
98 | 8 | 98 | 198 |
99 | 9 | 99 | 199 |
100 | 10 | 100 | 200 |
@chain df begin
groupby(:id)
combine([:x1, :x2] .=> minimum)
end
Row | id | x1_minimum | x2_minimum |
---|---|---|---|
Int64 | Int64 | Int64 | |
1 | 1 | 1 | 101 |
2 | 2 | 2 | 102 |
3 | 3 | 3 | 103 |
4 | 4 | 4 | 104 |
5 | 5 | 5 | 105 |
6 | 6 | 6 | 106 |
7 | 7 | 7 | 107 |
8 | 8 | 8 | 108 |
9 | 9 | 9 | 109 |
10 | 10 | 10 | 110 |
@chain df begin
groupby(:id)
combine([:x1, :x2] .=> [minimum maximum])
end
Row | id | x1_minimum | x2_minimum | x1_maximum | x2_maximum |
---|---|---|---|---|---|
Int64 | Int64 | Int64 | Int64 | Int64 | |
1 | 1 | 1 | 101 | 91 | 191 |
2 | 2 | 2 | 102 | 92 | 192 |
3 | 3 | 3 | 103 | 93 | 193 |
4 | 4 | 4 | 104 | 94 | 194 |
5 | 5 | 5 | 105 | 95 | 195 |
6 | 6 | 6 | 106 | 96 | 196 |
7 | 7 | 7 | 107 | 97 | 197 |
8 | 8 | 8 | 108 | 98 | 198 |
9 | 9 | 9 | 109 | 99 | 199 |
10 | 10 | 10 | 110 | 100 | 200 |
Aggregation of a data frame using mapcols#
x = DataFrame(rand(10, 10), :auto)
Row | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.142933 | 0.698027 | 0.800833 | 0.239132 | 0.178874 | 0.0204503 | 0.831044 | 0.394313 | 0.155643 | 0.821355 |
2 | 0.871697 | 0.486461 | 0.733391 | 0.98954 | 0.788407 | 0.939166 | 0.264716 | 0.940042 | 0.441365 | 0.546164 |
3 | 0.729192 | 0.629316 | 0.450316 | 0.0734478 | 0.173671 | 0.900968 | 0.7131 | 0.366368 | 0.431975 | 0.0348618 |
4 | 0.863221 | 0.247543 | 0.733563 | 0.00921637 | 0.92269 | 0.200339 | 0.347216 | 0.226552 | 0.469603 | 0.723935 |
5 | 0.212953 | 0.551312 | 0.887163 | 0.243485 | 0.411023 | 0.740894 | 0.937903 | 0.359857 | 0.870435 | 0.763588 |
6 | 0.450141 | 0.443776 | 0.0689358 | 0.620169 | 0.310059 | 0.352924 | 0.344005 | 0.954429 | 0.27418 | 0.506943 |
7 | 0.978055 | 0.213576 | 0.94304 | 0.381025 | 0.472879 | 0.974818 | 0.703878 | 0.953461 | 0.921067 | 0.676587 |
8 | 0.00193463 | 0.76328 | 0.831439 | 0.608385 | 0.103024 | 0.901616 | 0.68105 | 0.748914 | 0.267894 | 0.268814 |
9 | 0.458591 | 0.693498 | 0.174774 | 0.689581 | 0.0934355 | 0.671297 | 0.058933 | 0.0900385 | 0.115305 | 0.779629 |
10 | 0.172119 | 0.736147 | 0.571974 | 0.121839 | 0.754063 | 0.840438 | 0.580782 | 0.835718 | 0.494714 | 0.0780636 |
mapcols(mean, x)
Row | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.488084 | 0.546294 | 0.619543 | 0.397582 | 0.420812 | 0.654291 | 0.546263 | 0.586969 | 0.444218 | 0.519994 |
Mapping rows and columns using eachcol and eachrow#
map a function over each column and return a vector
map(mean, eachcol(x))
10-element Vector{Float64}:
0.4880837305347603
0.5462936532258832
0.6195428722469729
0.3975818076667079
0.42081249608994337
0.6542910592139737
0.546262570576392
0.5869692073307355
0.44421820059897693
0.5199939474914792
an iteration returns a Pair with column name and values
foreach(c -> println(c[1], ": ", mean(c[2])), pairs(eachcol(x)))
x1: 0.4880837305347603
x2: 0.5462936532258832
x3: 0.6195428722469729
x4: 0.3975818076667079
x5: 0.42081249608994337
x6: 0.6542910592139737
x7: 0.546262570576392
x8: 0.5869692073307355
x9: 0.44421820059897693
x10: 0.5199939474914792
now the returned value is DataFrameRow which works as a NamedTuple but is a view to a parent DataFrame
map(r -> r.x1 / r.x2, eachrow(x))
10-element Vector{Float64}:
0.20476684814042187
1.7919161167443853
1.1587060545644823
3.4871599001661853
0.38626626380992646
1.0143419056246494
4.579421293717041
0.0025346325040194943
0.6612724362340907
0.2338102187801741
it prints like a data frame, only the caption is different so that you know the type of the object
er = eachrow(x)
er.x1 ## you can access columns of a parent data frame directly
10-element Vector{Float64}:
0.14293288724939057
0.8716972684308065
0.7291924954982303
0.8632214579604041
0.21295310607107132
0.4501409310895359
0.9780545986593611
0.0019346332871597038
0.4585911654757868
0.1721187616258557
it prints like a data frame, only the caption is different so that you know the type of the object
ec = eachcol(x)
Row | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.142933 | 0.698027 | 0.800833 | 0.239132 | 0.178874 | 0.0204503 | 0.831044 | 0.394313 | 0.155643 | 0.821355 |
2 | 0.871697 | 0.486461 | 0.733391 | 0.98954 | 0.788407 | 0.939166 | 0.264716 | 0.940042 | 0.441365 | 0.546164 |
3 | 0.729192 | 0.629316 | 0.450316 | 0.0734478 | 0.173671 | 0.900968 | 0.7131 | 0.366368 | 0.431975 | 0.0348618 |
4 | 0.863221 | 0.247543 | 0.733563 | 0.00921637 | 0.92269 | 0.200339 | 0.347216 | 0.226552 | 0.469603 | 0.723935 |
5 | 0.212953 | 0.551312 | 0.887163 | 0.243485 | 0.411023 | 0.740894 | 0.937903 | 0.359857 | 0.870435 | 0.763588 |
6 | 0.450141 | 0.443776 | 0.0689358 | 0.620169 | 0.310059 | 0.352924 | 0.344005 | 0.954429 | 0.27418 | 0.506943 |
7 | 0.978055 | 0.213576 | 0.94304 | 0.381025 | 0.472879 | 0.974818 | 0.703878 | 0.953461 | 0.921067 | 0.676587 |
8 | 0.00193463 | 0.76328 | 0.831439 | 0.608385 | 0.103024 | 0.901616 | 0.68105 | 0.748914 | 0.267894 | 0.268814 |
9 | 0.458591 | 0.693498 | 0.174774 | 0.689581 | 0.0934355 | 0.671297 | 0.058933 | 0.0900385 | 0.115305 | 0.779629 |
10 | 0.172119 | 0.736147 | 0.571974 | 0.121839 | 0.754063 | 0.840438 | 0.580782 | 0.835718 | 0.494714 | 0.0780636 |
you can access columns of a parent data frame directly
ec.x1
10-element Vector{Float64}:
0.14293288724939057
0.8716972684308065
0.7291924954982303
0.8632214579604041
0.21295310607107132
0.4501409310895359
0.9780545986593611
0.0019346332871597038
0.4585911654757868
0.1721187616258557
Transposing#
you can transpose a data frame using permutedims
:
df = DataFrame(reshape(1:12, 3, 4), :auto)
Row | x1 | x2 | x3 | x4 |
---|---|---|---|---|
Int64 | Int64 | Int64 | Int64 | |
1 | 1 | 4 | 7 | 10 |
2 | 2 | 5 | 8 | 11 |
3 | 3 | 6 | 9 | 12 |
df.names = ["a", "b", "c"]
3-element Vector{String}:
"a"
"b"
"c"
permutedims(df, :names)
Row | names | a | b | c |
---|---|---|---|---|
String | Int64 | Int64 | Int64 | |
1 | x1 | 1 | 2 | 3 |
2 | x2 | 4 | 5 | 6 |
3 | x3 | 7 | 8 | 9 |
4 | x4 | 10 | 11 | 12 |
This notebook was generated using Literate.jl.