Load and save DataFrames#

We do not cover all features of the packages. Please refer to their documentation to learn them.

Here we’ll load CSV.jl to read and write CSV files and Arrow.jl and JLD2.jl, which allow us to work with a binary format, and finally JSONTables.jl for JSON interaction.

using DataFrames
using Arrow
using CSV
using JSONTables
using CodecZlib
using ZipFile
using JLD2
using StatsPlots ## for charts
using Mmap ## for compression

Let’s create a simple DataFrame for testing purposes,

x = DataFrame(
    A=[true, false, true], B=[1, 2, missing],
    C=[missing, "b", "c"], D=['a', missing, 'c']
)
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc

and use eltypes to look at the column-wise types.

eltype.(eachcol(x))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, Char}

CSV.jl#

Let’s use CSV.jl to save x to disk; make sure x1.csv does not conflict with some file in your working directory.

tmpdir = mktempdir()
"/tmp/jl_NCjoHX"
location = joinpath(tmpdir, "x1.csv")
CSV.write(location, x)
"/tmp/jl_NCjoHX/x1.csv"

Now we can see how it was saved by reading x.csv.

print(read(location, String))
A,B,C,D
true,1,,a
false,2,b,
true,,c,c

We can also load it back as a data frame

y = CSV.read(location, DataFrame)
3×4 DataFrame
RowABCD
BoolInt64?String1?String1?
1true1missinga
2false2bmissing
3truemissingcc

Note that when loading in a DataFrame from a CSV the column type for columns :C :D have changed to use special strings defined in the InlineStrings.jl package.

eltype.(eachcol(y))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, InlineStrings.String1}
 Union{Missing, InlineStrings.String1}

JSONTables.jl#

Often you might need to read and write data stored in JSON format. JSONTables.jl provides a way to process them in row-oriented or column-oriented layout. We present both options below.

location1 = joinpath(tmpdir, "x1.json")
open(io -> arraytable(io, x), location1, "w")
106
location2 = joinpath(tmpdir, "x2.json")
open(io -> objecttable(io, x), location2, "w")
76

Read them back.

print(read(location1, String))
[{"A":true,"B":1,"C":null,"D":"a"},{"A":false,"B":2,"C":"b","D":null},{"A":true,"B":null,"C":"c","D":"c"}]
print(read(location2, String))
{"A":[true,false,true],"B":[1,2,null],"C":[null,"b","c"],"D":["a",null,"c"]}
y1 = open(jsontable, location1) |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?String?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y1))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, String}
y2 = open(jsontable, location2) |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?String?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y2))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, String}

JLD2.jl#

JLD2.jl is a high-performance, pure Julia library for saving and loading arbitrary Julia data structures, with HDF5 format.

Documentation: https://juliaio.github.io/JLD2.jl/dev/basic_usage/

  • save() and load(): General save and load using the FileIO.jl interface

  • jldsave() and jldloac(): Advanced save and load with more options

  • save_object() and load_object(): Single-object load and save

using JLD2
location = joinpath(tmpdir, "x.jld2")

save_object(location, x)

Read it back.

load_object(location)
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc

Arrow.jl#

Finally we use Apache Arrow format that allows, in particular, for data interchange with R or Python.

location = joinpath(tmpdir, "x.arrow")
Arrow.write(location, x)
"/tmp/jl_NCjoHX/x.arrow"
y = Arrow.Table(location) |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, Char}

Note that columns of y are immutable

try
    y.A[1] = false
catch e
    show(e)
end
ReadOnlyMemoryError()

This is because Arrow.Table uses memory mapping and thus uses a custom vector types:

y.A
3-element Arrow.BoolVector{Bool}:
 1
 0
 1
y.B
3-element Arrow.Primitive{Union{Missing, Int64}, Vector{Int64}}:
 1
 2
  missing

You can get standard Julia Base vectors by copying a dataframe.

y2 = copy(y)
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc
y2.A
3-element Vector{Bool}:
 1
 0
 1
y2.B
3-element Vector{Union{Missing, Int64}}:
 1
 2
  missing

Basic benchmarking#

Next, we’ll create some files in the temp directory.

In particular, we’ll time how long it takes us to write a DataFrame with 1000 rows and 100000 columns.

bigdf = DataFrame(rand(Bool, 10^4, 1000), :auto)

bigdf[!, 1] = Int.(bigdf[!, 1])
bigdf[!, 2] = bigdf[!, 2] .+ 0.5
bigdf[!, 3] = string.(bigdf[!, 3], ", as string")

tmpdir = mktempdir()
"/tmp/jl_Hp2hyq"
println("First run")
First run
println("CSV.jl")
fname = joinpath(tmpdir, "bigdf1.csv.gz")
csvwrite1 = @elapsed @time CSV.write(fname, bigdf; compress=true)

println("Arrow.jl")
fname = joinpath(tmpdir, "bigdf.arrow")
arrowwrite1 = @elapsed @time Arrow.write(fname, bigdf)

println("JSONTables.jl arraytable")
fname = joinpath(tmpdir, "bigdf1.json")
jsontablesawrite1 = @elapsed @time open(io -> arraytable(io, bigdf), fname, "w")

println("JSONTables.jl objecttable")
fname = joinpath(tmpdir, "bigdf2.json")
jsontablesowrite1 = @elapsed @time open(io -> objecttable(io, bigdf), fname, "w")

println("JLD2.jl")
fname = joinpath(tmpdir, "bigdf.jld2")
jld2write1 = @elapsed @time save_object(fname, bigdf; compress = ZstdFilter())

println("Second run")

println("CSV.jl")
fname = joinpath(tmpdir, "bigdf1.csv.gz")
csvwrite2 = @elapsed @time CSV.write(fname, bigdf; compress=true)

println("Arrow.jl")
fname = joinpath(tmpdir, "bigdf.arrow")
arrowwrite2 = @elapsed @time Arrow.write(fname, bigdf)

println("JSONTables.jl arraytable")
fname = joinpath(tmpdir, "bigdf1.json")
jsontablesawrite2 = @elapsed @time open(io -> arraytable(io, bigdf), fname, "w")

println("JSONTables.jl objecttable")
fname = joinpath(tmpdir, "bigdf2.json")
jsontablesowrite2 = @elapsed @time open(io -> objecttable(io, bigdf), fname, "w")

println("JLD2.jl")
fname = joinpath(tmpdir, "bigdf.jld2")
jld2write2 = @elapsed @time save_object(fname, bigdf; compress = ZstdFilter());
CSV.jl
 10.049095 seconds (45.04 M allocations: 1.590 GiB, 1.47% gc time, 75.14% compilation time: <1% of which was recompilation)
Arrow.jl
  6.134977 seconds (6.63 M allocations: 325.180 MiB, 0.20% gc time, 98.48% compilation time)
JSONTables.jl arraytable
 11.608098 seconds (229.63 M allocations: 5.497 GiB, 17.16% gc time, 0.14% compilation time: <1% of which was recompilation)
JSONTables.jl objecttable
  0.272778 seconds (106.17 k allocations: 309.448 MiB, 6.52% gc time, 28.97% compilation time)
JLD2.jl
  0.943068 seconds (1.62 M allocations: 88.089 MiB, 90.96% compilation time: 11% of which was recompilation)
Second run
CSV.jl
  2.568779 seconds (44.41 M allocations: 1.560 GiB, 5.79% gc time)
Arrow.jl
  0.105038 seconds (80.86 k allocations: 5.164 MiB)
JSONTables.jl arraytable
 11.318001 seconds (229.63 M allocations: 5.497 GiB, 14.72% gc time, 0.09% compilation time)
JSONTables.jl objecttable
  0.483395 seconds (20.84 k allocations: 305.240 MiB, 55.54% gc time, 2.05% compilation time)
JLD2.jl
  0.083296 seconds (134.50 k allocations: 13.779 MiB)
groupedbar(
    repeat(["CSV.jl (gz)", "Arrow.jl", "JSONTables.jl\nobjecttable", "JLD2.jl"],
        inner=2),
    [csvwrite1, csvwrite2, arrowwrite1, arrowwrite2, jsontablesowrite1, jsontablesowrite2, jld2write1, jld2write2],
    group=repeat(["1st", "2nd"], outer=4),
    ylab="Second",
    title="Write Performance\nDataFrame: bigdf\nSize: $(size(bigdf))",
    permute = (:x, :y)
)
_images/a6d31e46ba61cb22bed48273929187b19b22eabf1e62046f6bad8b75bcf032f8.png
data_files = ["bigdf1.csv.gz", "bigdf.arrow", "bigdf1.json", "bigdf2.json", "bigdf.jld2"] .|> (f -> joinpath(tmpdir, f))
df = DataFrame(file=["CSV.jl (gz)", "Arrow.jl", "objecttable", "arraytable", "JLD2.jl"], size=getfield.(stat.(data_files), :size))
sort!(df, :size)
5×2 DataFrame
Rowfilesize
StringInt64
1Arrow.jl1742794
2CSV.jl (gz)2470532
3JLD2.jl2740231
4arraytable55087111
5objecttable124028218
@df df plot(:file, :size / 1024^2, seriestype=:bar, title="Format File Size (MB)", label="Size", ylab="MB")
_images/81cce4a0144e508a06a181be0439d2acae6c43a358095ff976631d606e2d292b.png
println("First run")

println("CSV.jl")
fname = joinpath(tmpdir, "bigdf1.csv.gz")
csvread1 = @elapsed @time CSV.read(fname, DataFrame)

println("Arrow.jl")
fname = joinpath(tmpdir, "bigdf.arrow")
arrowread1 = @elapsed @time df_tmp = Arrow.Table(fname) |> DataFrame
arrowread1copy = @elapsed @time copy(df_tmp)

println("JSONTables.jl arraytable")
fname = joinpath(tmpdir, "bigdf1.json")
jsontablesaread1 = @elapsed @time open(jsontable, fname)

println("JSONTables.jl objecttable")
fname = joinpath(tmpdir, "bigdf2.json")
jsontablesoread1 = @elapsed @time open(jsontable, fname)

println("JLD2.jl")
fname = joinpath(tmpdir, "bigdf.jld2")
jld2read1 = @elapsed @time load_object(fname)

println("Second run")
fname = joinpath(tmpdir, "bigdf1.csv.gz")
csvread2 = @elapsed @time CSV.read(fname, DataFrame)

println("Arrow.jl")
fname = joinpath(tmpdir, "bigdf.arrow")
arrowread2 = @elapsed @time df_tmp = Arrow.Table(fname) |> DataFrame
arrowread2copy = @elapsed @time copy(df_tmp)

println("JSONTables.jl arraytable")
fname = joinpath(tmpdir, "bigdf1.json")
jsontablesaread2 = @elapsed @time open(jsontable, fname)

println("JSONTables.jl objecttable")
fname = joinpath(tmpdir, "bigdf2.json")
jsontablesoread2 = @elapsed @time open(jsontable, fname)

println("JLD2.jl")
fname = joinpath(tmpdir, "bigdf.jld2")
jld2read2 = @elapsed @time load_object(fname);
First run
CSV.jl
  2.738544 seconds (4.40 M allocations: 223.428 MiB, 1.15% gc time, 108.14% compilation time)
Arrow.jl
  0.528449 seconds (573.39 k allocations: 26.952 MiB, 98.33% compilation time)
  0.087749 seconds (14.07 k allocations: 10.299 MiB, 22.32% gc time, 4.64% compilation time)
JSONTables.jl arraytable
  6.502142 seconds (271.10 k allocations: 1.772 GiB, 9.40% gc time)
JSONTables.jl objecttable
  0.374600 seconds (7.39 k allocations: 566.934 MiB, 3.31% gc time, 0.03% compilation time)
JLD2.jl
  0.330011 seconds (423.71 k allocations: 38.821 MiB, 86.62% compilation time)
Second run
  1.229995 seconds (637.04 k allocations: 43.698 MiB)
Arrow.jl
  0.006492 seconds (84.09 k allocations: 3.594 MiB)
  0.051257 seconds (14.02 k allocations: 10.297 MiB)
JSONTables.jl arraytable
  6.361570 seconds (271.10 k allocations: 1.772 GiB, 9.82% gc time)
JSONTables.jl objecttable
  0.353699 seconds (7.08 k allocations: 566.922 MiB, 1.90% gc time)
JLD2.jl
  0.040330 seconds (121.76 k allocations: 24.188 MiB, 9.31% gc time)

Exclude JSONTables due to much longer timing

groupedbar(
    repeat(["CSV.jl (gz)", "Arrow.jl", "Arrow.jl\ncopy", ##"JSON\narraytable",
            "JSON\nobjecttable", "JLD2.jl"], inner=2),
    [csvread1, csvread2, arrowread1, arrowread2, arrowread1 + arrowread1copy, arrowread2 + arrowread2copy,
        # jsontablesaread1, jsontablesaread2,
        jsontablesoread1, jsontablesoread2, jld2read1, jld2read2],
    group=repeat(["1st", "2nd"], outer=5),
    ylab="Second",
    title="Read Performance\nDataFrame: bigdf\nSize: $(size(bigdf))",
    permute = (:x, :y)
)
_images/c31a0df5c09dae263899108f2b896ccca6163b2c3fdba2da5f3bdcb9de6ef955.png

Using gzip compression#

A common user requirement is to be able to load and save CSV that are compressed using gzip. Below we show how this can be accomplished using CodecZlib.jl.

Again make sure that you do not have file named df_compress_test.csv.gz in your working directory. We first generate a random data frame.

df = DataFrame(rand(1:10, 10, 1000), :auto)
10×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64
1107375691036233681034699372498106410464212825869675331928466810794232774108661085215179294367383818799448211
26211257412193769102510816751010466649458917197498369191062565473213384239829492995972191019165612610176105109
33349694478736278710221019216542861108264189275263410631034106187469101017925577551011011091065661484431310107395210
4984226510710766192110885291048110811013965716775691063373598911014610773713599985577649444871079676210621412673
5441921141495147838110634663555112145741026921088524953272109215342256811019211636874664523109926810919661077
6144108747545210111058439610991637972210632751633451611519272725882988274109841133515108773531419529273681031
73107144952375101261251076511697327211410462710924688927999121099721474147352366246577949107101810489442211243
858387105194238910546741109108377374984554928792486146683597133122591073897128875728771232851012261063144562
91057919991101943512567325383256345108110913101015421036366146931109287766786610775101287729510241101042210833105812
1010105166651106324451310899229938410395161098510845279824691087333841923371224913865710544687103238916838721396

Use compress=true option to compress the CSV with the gz format.

tmpdir = mktempdir()
fname = joinpath(tmpdir, "df_compress_test.csv.gz")
CSV.write(fname, df; compress=true)
"/tmp/jl_p0Y3nI/df_compress_test.csv.gz"

Read the CSV file back.

df2 = CSV.File(fname) |> DataFrame
10×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64
1107375691036233681034699372498106410464212825869675331928466810794232774108661085215179294367383818799448211
26211257412193769102510816751010466649458917197498369191062565473213384239829492995972191019165612610176105109
33349694478736278710221019216542861108264189275263410631034106187469101017925577551011011091065661484431310107395210
4984226510710766192110885291048110811013965716775691063373598911014610773713599985577649444871079676210621412673
5441921141495147838110634663555112145741026921088524953272109215342256811019211636874664523109926810919661077
6144108747545210111058439610991637972210632751633451611519272725882988274109841133515108773531419529273681031
73107144952375101261251076511697327211410462710924688927999121099721474147352366246577949107101810489442211243
858387105194238910546741109108377374984554928792486146683597133122591073897128875728771232851012261063144562
91057919991101943512567325383256345108110913101015421036366146931109287766786610775101287729510241101042210833105812
1010105166651106324451310899229938410395161098510845279824691087333841923371224913865710544687103238916838721396
df == df2
true

Working with zip files#

Sometimes you may have files compressed inside a zip file. In such a situation you may use ZipFile.jl in conjunction an an appropriate reader to read the files. Here we first create a ZIP file and then read back its contents into a DataFrame.

df1 = DataFrame(rand(1:10, 3, 4), :auto)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
129210
285110
37193
df2 = DataFrame(rand(1:10, 3, 4), :auto)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
16688
25555
35384

And we show yet another way to write a DataFrame into a CSV file: Writing a CSV file into the zip file

w = ZipFile.Writer(joinpath(tmpdir, "x.zip"))

f1 = ZipFile.addfile(w, "x1.csv")
write(f1, sprint(show, "text/csv", df1))
46

write a second CSV file into the zip file

f2 = ZipFile.addfile(w, "x2.csv", method=ZipFile.Deflate)
write(f2, sprint(show, "text/csv", df2))
44
close(w)

Now we read the compressed CSV file we have written:

r = ZipFile.Reader(joinpath(tmpdir, "x.zip"))
# find the index index of file called x1.csv
index_xcsv = findfirst(x -> x.name == "x1.csv", r.files)
# to read the x1.csv file in the zip file
df1_2 = CSV.read(read(r.files[index_xcsv]), DataFrame)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
129210
285110
37193
df1_2 == df1
true
# find the index index of file called x2.csv
index_xcsv = findfirst(x -> x.name == "x2.csv", r.files)
# to read the x2.csv file in the zip file
df2_2 = CSV.read(read(r.files[index_xcsv]), DataFrame)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
16688
25555
35384
df2_2 == df2
true

Note that once you read a given file from r object its stream is all used-up (reaching its end). Therefore to read it again you need to close the file object r and open it again. Also do not forget to close the zip file once you are done.

close(r)

This notebook was generated using Literate.jl.