Load and save DataFrames#

We do not cover all features of the packages. Please refer to their documentation to learn them.

Here we’ll load CSV.jl to read and write CSV files and Arrow.jl, JLSO.jl, and serialization, which allow us to work with a binary format and JSONTables.jl for JSON interaction. Finally we consider a custom JDF.jl format.

using DataFrames
using Arrow
using CSV
using Serialization
using JLSO
using JSONTables
using CodecZlib
using ZipFile
using JDF
using StatsPlots ## for charts
using Mmap ## for compression

Let’s create a simple DataFrame for testing purposes,

x = DataFrame(
    A=[true, false, true], B=[1, 2, missing],
    C=[missing, "b", "c"], D=['a', missing, 'c']
)
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc

and use eltypes to look at the columnwise types.

eltype.(eachcol(x))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, Char}

CSV.jl#

Let’s use CSV to save x to disk; make sure x1.csv does not conflict with some file in your working directory.

CSV.write("x1.csv", x)
"x1.csv"

Now we can see how it was saved by reading x.csv.

print(read("x1.csv", String))
A,B,C,D
true,1,,a
false,2,b,
true,,c,c

We can also load it back as a data frame

y = CSV.read("x1.csv", DataFrame)
3×4 DataFrame
RowABCD
BoolInt64?String1?String1?
1true1missinga
2false2bmissing
3truemissingcc

Note that when loading in a DataFrame from a CSV the column type for columns :C :D have changed to use special strings defined in the InlineStrings.jl package.

eltype.(eachcol(y))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, InlineStrings.String1}
 Union{Missing, InlineStrings.String1}

Serialization by JDF.jl and JLSO.jl#

Now we use serialization to save x.

There are two ways to perform serialization. The first way is to use the Serialization.serialize as below:

Note that in general, this process will not work if the reading and writing are done by different versions of Julia, or an instance of Julia with a different system image.

open("x.bin", "w") do io
    serialize(io, x)
end

Now we load back the saved file to y variable. Again y is identical to x. However, please beware that if you session does not have DataFrames.jl loaded, then it may not recognize the content as DataFrames.jl

y = open(deserialize, "x.bin")
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, Char}

JDF.jl#

JDF.jl is a relatively new package designed to serialize DataFrames. You can save a DataFrame with the savejdf function. For more details about design assumptions and limitations of JDF.jl please check out xiaodaigh/JDF.jl.

JDF.save("x.jdf", x);

To load the saved JDF file, one can use the loadjdf function

x_loaded = JDF.load("x.jdf") |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc

You can see that they are the same

isequal(x_loaded, x)
true

JDF.jl offers the ability to load only certain columns from disk to help with working with large files. set up a JDFFile which is a on disk representation of x backed by JDF.jl

x_ondisk = jdf"x.jdf"
JDF.JDFFile{String}("x.jdf")

We can see all the names of x without loading it into memory

names(x_ondisk)
4-element Vector{Symbol}:
 :A
 :B
 :C
 :D

The below is an example of how to load only columns :A and :D

xd = JDF.load(x_ondisk; cols=["A", "D"]) |> DataFrame
3×2 DataFrame
RowAD
BoolChar?
1truea
2falsemissing
3truec

JLSO.jl#

Another way to perform serialization is by using the JLSO.jl library:

JLSO.save("x.jlso", :data => x)

Now we can load back the file to y

y = JLSO.load("x.jlso")[:data]
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, Char}

JSONTables.jl#

Often you might need to read and write data stored in JSON format. JSONTables.jl provides a way to process them in row-oriented or column-oriented layout. We present both options below.

open(io -> arraytable(io, x), "x1.json", "w")
106
open(io -> objecttable(io, x), "x2.json", "w")
76
print(read("x1.json", String))
[{"A":true,"B":1,"C":null,"D":"a"},{"A":false,"B":2,"C":"b","D":null},{"A":true,"B":null,"C":"c","D":"c"}]
print(read("x2.json", String))
{"A":[true,false,true],"B":[1,2,null],"C":[null,"b","c"],"D":["a",null,"c"]}
y1 = open(jsontable, "x1.json") |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?String?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y1))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, String}
y2 = open(jsontable, "x2.json") |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?String?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y2))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, String}

Arrow.jl#

Finally we use Apache Arrow format that allows, in particular, for data interchange with R or Python.

Arrow.write("x.arrow", x)
"x.arrow"
y = Arrow.Table("x.arrow") |> DataFrame
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc
eltype.(eachcol(y))
4-element Vector{Type}:
 Bool
 Union{Missing, Int64}
 Union{Missing, String}
 Union{Missing, Char}

Note that columns of y are immutable

try
    y.A[1] = false
catch e
    show(e)
end
ReadOnlyMemoryError()

This is because Arrow.Table uses memory mapping and thus uses a custom vector types:

y.A
3-element Arrow.BoolVector{Bool}:
 1
 0
 1
y.B
3-element Arrow.Primitive{Union{Missing, Int64}, Vector{Int64}}:
 1
 2
  missing

You can get standard Julia Base vectors by copying a data frame

y2 = copy(y)
3×4 DataFrame
RowABCD
BoolInt64?String?Char?
1true1missinga
2false2bmissing
3truemissingcc
y2.A
3-element Vector{Bool}:
 1
 0
 1
y2.B
3-element Vector{Union{Missing, Int64}}:
 1
 2
  missing

Basic benchmarking#

Next, we’ll create some files, so be careful that you don’t already have these files in your working directory! In particular, we’ll time how long it takes us to write a DataFrame with 1000 rows and 100000 columns.

bigdf = DataFrame(rand(Bool, 10^4, 1000), :auto)

bigdf[!, 1] = Int.(bigdf[!, 1])
bigdf[!, 2] = bigdf[!, 2] .+ 0.5
bigdf[!, 3] = string.(bigdf[!, 3], ", as string")

println("First run")
First run
println("CSV.jl")
csvwrite1 = @elapsed @time CSV.write("bigdf1.csv", bigdf)
println("Serialization")
serializewrite1 = @elapsed @time open(io -> serialize(io, bigdf), "bigdf.bin", "w")
println("JDF.jl")
jdfwrite1 = @elapsed @time JDF.save("bigdf.jdf", bigdf)
println("JLSO.jl")
jlsowrite1 = @elapsed @time JLSO.save("bigdf.jlso", :data => bigdf)
println("Arrow.jl")
arrowwrite1 = @elapsed @time Arrow.write("bigdf.arrow", bigdf)
println("JSONTables.jl arraytable")
jsontablesawrite1 = @elapsed @time open(io -> arraytable(io, bigdf), "bigdf1.json", "w")
println("JSONTables.jl objecttable")
jsontablesowrite1 = @elapsed @time open(io -> objecttable(io, bigdf), "bigdf2.json", "w")
println("Second run")
println("CSV.jl")
csvwrite2 = @elapsed @time CSV.write("bigdf1.csv", bigdf)
println("Serialization")
serializewrite2 = @elapsed @time open(io -> serialize(io, bigdf), "bigdf.bin", "w")
println("JDF.jl")
jdfwrite2 = @elapsed @time JDF.save("bigdf.jdf", bigdf)
println("JLSO.jl")
jlsowrite2 = @elapsed @time JLSO.save("bigdf.jlso", :data => bigdf)
println("Arrow.jl")
arrowwrite2 = @elapsed @time Arrow.write("bigdf.arrow", bigdf)
println("JSONTables.jl arraytable")
jsontablesawrite2 = @elapsed @time open(io -> arraytable(io, bigdf), "bigdf1.json", "w")
println("JSONTables.jl objecttable")
jsontablesowrite2 = @elapsed @time open(io -> objecttable(io, bigdf), "bigdf2.json", "w")
CSV.jl
  4.425211 seconds (44.69 M allocations: 1.127 GiB, 3.55% gc time, 69.26% compilation time)
Serialization
  0.196434 seconds (224.29 k allocations: 10.825 MiB, 4.88% gc time, 28.97% compilation time)
JDF.jl
  0.128338 seconds (68.08 k allocations: 147.945 MiB, 14.16% gc time, 49.25% compilation time)
JLSO.jl
  1.044408 seconds (284.79 k allocations: 20.878 MiB, 0.75% gc time, 6.64% compilation time)
Arrow.jl
  3.952950 seconds (5.45 M allocations: 275.525 MiB, 0.64% gc time, 97.68% compilation time)
JSONTables.jl arraytable
 12.152417 seconds (229.62 M allocations: 5.422 GiB, 18.49% gc time, 0.08% compilation time)
JSONTables.jl objecttable
  0.542825 seconds (96.64 k allocations: 309.085 MiB, 51.63% gc time, 15.24% compilation time)
Second run
CSV.jl
  1.387532 seconds (44.40 M allocations: 1.113 GiB, 9.94% gc time)
Serialization
  0.139032 seconds (15.01 k allocations: 403.086 KiB, 6.71% compilation time)
JDF.jl
  0.100345 seconds (35.13 k allocations: 146.222 MiB, 13.05% gc time)
JLSO.jl
  0.971269 seconds (33.37 k allocations: 7.969 MiB)
Arrow.jl
  0.091576 seconds (81.35 k allocations: 5.426 MiB)
JSONTables.jl arraytable
 11.900882 seconds (229.62 M allocations: 5.422 GiB, 15.14% gc time, 0.09% compilation time)
JSONTables.jl objecttable
  0.487132 seconds (20.71 k allocations: 305.221 MiB, 54.21% gc time, 2.02% compilation time)
0.487298284
groupedbar(
    repeat(["CSV.jl", "Serialization", "JDF.jl", "JLSO.jl", "Arrow.jl", "JSONTables.jl\nobjecttable"],
        inner=2),
    [csvwrite1, csvwrite2, serializewrite1, serializewrite1, jdfwrite1, jdfwrite2,
        jlsowrite1, jlsowrite2, arrowwrite1, arrowwrite2, jsontablesowrite2, jsontablesowrite2],
    group=repeat(["1st", "2nd"], outer=6),
    ylab="Second",
    title="Write Performance\nDataFrame: bigdf\nSize: $(size(bigdf))"
)
_images/8a4eeb33a9defb396349967fd12eeaffd149a961fa2403cf16e67255a51e05ce.png
data_files = ["bigdf1.csv", "bigdf.bin", "bigdf.arrow", "bigdf1.json", "bigdf2.json"]
df = DataFrame(file=data_files, size=getfield.(stat.(data_files), :size))
append!(df, DataFrame(file="bigdf.jdf", size=reduce((x, y) -> x + y.size,
    stat.(joinpath.("bigdf.jdf", readdir("bigdf.jdf"))),
    init=0)))
sort!(df, :size)
6×2 DataFrame
Rowfilesize
StringInt64
1bigdf.arrow1742898
2bigdf.bin5199455
3bigdf.jdf5224275
4bigdf1.csv55084448
5bigdf2.json55088449
6bigdf1.json124029556
@df df plot(:file, :size / 1024^2, seriestype=:bar, title="Format File Size (MB)", label="Size", ylab="MB")
_images/5eaa1183eaff2be1858ad17fd1003cdb1d6666443177e85f99910bab1b086b53.png
println("First run")
println("CSV.jl")
csvread1 = @elapsed @time CSV.read("bigdf1.csv", DataFrame)
println("Serialization")
serializeread1 = @elapsed @time open(deserialize, "bigdf.bin")
println("JDF.jl")
jdfread1 = @elapsed @time JDF.load("bigdf.jdf") |> DataFrame
println("JLSO.jl")
jlsoread1 = @elapsed @time JLSO.load("bigdf.jlso")
println("Arrow.jl")
arrowread1 = @elapsed @time df_tmp = Arrow.Table("bigdf.arrow") |> DataFrame
arrowread1copy = @elapsed @time copy(df_tmp)
println("JSONTables.jl arraytable")
jsontablesaread1 = @elapsed @time open(jsontable, "bigdf1.json")
println("JSONTables.jl objecttable")
jsontablesoread1 = @elapsed @time open(jsontable, "bigdf2.json")
println("Second run")
csvread2 = @elapsed @time CSV.read("bigdf1.csv", DataFrame)
println("Serialization")
serializeread2 = @elapsed @time open(deserialize, "bigdf.bin")
println("JDF.jl")
jdfread2 = @elapsed @time JDF.load("bigdf.jdf") |> DataFrame
println("JLSO.jl")
jlsoread2 = @elapsed @time JLSO.load("bigdf.jlso")
println("Arrow.jl")
arrowread2 = @elapsed @time df_tmp = Arrow.Table("bigdf.arrow") |> DataFrame
arrowread2copy = @elapsed @time copy(df_tmp)
println("JSONTables.jl arraytable")
jsontablesaread2 = @elapsed @time open(jsontable, "bigdf1.json")
println("JSONTables.jl objecttable")
jsontablesoread2 = @elapsed @time open(jsontable, "bigdf2.json");
First run
CSV.jl
  2.615539 seconds (3.55 M allocations: 208.428 MiB, 1.24% gc time, 139.11% compilation time)
Serialization
  0.402124 seconds (9.50 M allocations: 155.498 MiB, 8.63% gc time, 8.83% compilation time)
JDF.jl
  0.178533 seconds (169.92 k allocations: 158.470 MiB, 9.39% gc time, 80.53% compilation time)
JLSO.jl
  0.350620 seconds (9.52 M allocations: 158.179 MiB, 7.58% gc time, 7.29% compilation time)
Arrow.jl
  0.442189 seconds (550.37 k allocations: 26.348 MiB, 98.34% compilation time)
  0.050265 seconds (14.50 k allocations: 10.259 MiB)
JSONTables.jl arraytable
  6.264694 seconds (271.09 k allocations: 1.838 GiB, 9.71% gc time)
JSONTables.jl objecttable
  0.356244 seconds (7.43 k allocations: 403.796 MiB, 4.57% gc time, 0.02% compilation time)
Second run
  0.623085 seconds (152.55 k allocations: 34.426 MiB)
Serialization
  0.357145 seconds (9.48 M allocations: 154.588 MiB, 5.51% gc time)
JDF.jl
  0.362624 seconds (77.27 k allocations: 153.747 MiB, 86.63% gc time)
JLSO.jl
  0.332968 seconds (9.50 M allocations: 157.310 MiB, 5.01% gc time)
Arrow.jl
  0.006500 seconds (86.57 k allocations: 3.731 MiB)
  0.049625 seconds (14.50 k allocations: 10.259 MiB)
JSONTables.jl arraytable
  6.256591 seconds (271.09 k allocations: 1.838 GiB, 10.13% gc time)
JSONTables.jl objecttable
  0.351383 seconds (7.08 k allocations: 403.780 MiB, 1.07% gc time)

Exclude JSONTables due to much longer timing

groupedbar(
    repeat(["CSV.jl", "Serialization", "JDF.jl", "JLSO.jl", "Arrow.jl", "Arrow.jl\ncopy", ##"JSON\narraytable",
            "JSON\nobjecttable"], inner=2),
    [csvread1, csvread2, serializeread1, serializeread2, jdfread1, jdfread2, jlsoread1, jlsoread2,
        arrowread1, arrowread2, arrowread1 + arrowread1copy, arrowread2 + arrowread2copy,
        # jsontablesaread1, jsontablesaread2,
        jsontablesoread1, jsontablesoread2],
    group=repeat(["1st", "2nd"], outer=7),
    ylab="Second",
    title="Read Performance\nDataFrame: bigdf\nSize: $(size(bigdf))"
)
_images/d43f0d5efe0c1edd010e6018561aed7ca6427f100d2c97ec88d5a0e0b0189999.png

Using gzip compression#

A common user requirement is to be able to load and save CSV that are compressed using gzip. Below we show how this can be accomplished using CodecZlib.jl. The same pattern is applicable to JSONTables.jl compression/decompression. Again make sure that you do not have file named df_compress_test.csv.gz in your working directory. We first generate a random data frame.

df = DataFrame(rand(1:10, 10, 1000), :auto)
10×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64
19997291046488383104646243104116568457510177107186494686112831628467754841187853491021044239899109874919317210
28331107972887434392485611110411014651882315317771821044971043162199319672426432192102102891772932645471010627
349349633109108102761056281719910382278821329722993524957226971036974110559546210104710713965131119177661112952
4586163964796345961052891037845252181101210123242563675773937242174110769888634323337316899843771079810172108
5227629103487725258883834119884871092776351062825951107711051049133351921325421051010832811062194937548891914410
6879749874324817869617664893264374104153982431610108123833981697104547779935256453538310276412485856953248
716881018761771918868227328108794358743953252828619974754974751059104510971010910468844774156101079101095755910918
83759422441421046102993411616810863213568329571321076101646924148863716461438281010842103299361065897736913471
9263764511086710985725110153810581015985488104631075935104879525687218555910117314634105101132311224265293146153
101265823345562154110182467961103137318429510151086326104910931329107532510833410985287891038571041813361181191027

GzipCompressorStream comes from CodecZlib

open("df_compress_test.csv.gz", "w") do io
    stream = GzipCompressorStream(io)
    CSV.write(stream, df)
    close(stream)
end
df2 = CSV.File(transcode(GzipDecompressor, Mmap.mmap("df_compress_test.csv.gz"))) |> DataFrame
10×1000 DataFrame
900 columns omitted
Rowx1x2x3x4x5x6x7x8x9x10x11x12x13x14x15x16x17x18x19x20x21x22x23x24x25x26x27x28x29x30x31x32x33x34x35x36x37x38x39x40x41x42x43x44x45x46x47x48x49x50x51x52x53x54x55x56x57x58x59x60x61x62x63x64x65x66x67x68x69x70x71x72x73x74x75x76x77x78x79x80x81x82x83x84x85x86x87x88x89x90x91x92x93x94x95x96x97x98x99x100
Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64Int64
19997291046488383104646243104116568457510177107186494686112831628467754841187853491021044239899109874919317210
28331107972887434392485611110411014651882315317771821044971043162199319672426432192102102891772932645471010627
349349633109108102761056281719910382278821329722993524957226971036974110559546210104710713965131119177661112952
4586163964796345961052891037845252181101210123242563675773937242174110769888634323337316899843771079810172108
5227629103487725258883834119884871092776351062825951107711051049133351921325421051010832811062194937548891914410
6879749874324817869617664893264374104153982431610108123833981697104547779935256453538310276412485856953248
716881018761771918868227328108794358743953252828619974754974751059104510971010910468844774156101079101095755910918
83759422441421046102993411616810863213568329571321076101646924148863716461438281010842103299361065897736913471
9263764511086710985725110153810581015985488104631075935104879525687218555910117314634105101132311224265293146153
101265823345562154110182467961103137318429510151086326104910931329107532510833410985287891038571041813361181191027
df == df2
true

Using zip files#

Sometimes you may have files compressed inside a zip file. In such a situation you may use ZipFile.jl in conjunction an an appropriate reader to read the files. Here we first create a ZIP file and then read back its contents into a DataFrame.

df1 = DataFrame(rand(1:10, 3, 4), :auto)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
17533
23997
39544
df2 = DataFrame(rand(1:10, 3, 4), :auto)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
18175
22886
39583

And we show yet another way to write a DataFrame into a CSV file: Writing a CSV file into the zip file

w = ZipFile.Writer("x.zip")

f1 = ZipFile.addfile(w, "x1.csv")
write(f1, sprint(show, "text/csv", df1))

# write a second CSV file into zip file
f2 = ZipFile.addfile(w, "x2.csv", method=ZipFile.Deflate)
write(f2, sprint(show, "text/csv", df2))

close(w)

Now we read the compressed CSV file we have written:

z = ZipFile.Reader("x.zip");
# find the index index of file called x1.csv
index_xcsv = findfirst(x -> x.name == "x1.csv", z.files)
# to read the x1.csv file in the zip file
df1_2 = CSV.read(read(z.files[index_xcsv]), DataFrame)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
17533
23997
39544
df1_2 == df1
true
# find the index index of file called x2.csv
index_xcsv = findfirst(x -> x.name == "x2.csv", z.files)
# to read the x2.csv file in the zip file
df2_2 = CSV.read(read(z.files[index_xcsv]), DataFrame)
3×4 DataFrame
Rowx1x2x3x4
Int64Int64Int64Int64
18175
22886
39583
df2_2 == df2
true

Note that once you read a given file from z object its stream is all used-up (reaching its end). Therefore to read it again you need to close the file object z and open it again. Also do not forget to close the zip file once you are done.

close(z)

Remove generated files

rm("x.arrow")
rm("x.bin")
rm("x.zip")
rm("x.jlso")
rm("x1.csv")
rm("x1.json")
rm("x2.json")
rm("x.jdf", recursive=true)
rm("bigdf.jdf", recursive=true)
rm("df_compress_test.csv.gz")
rm("bigdf1.json")
rm("bigdf1.csv")
rm("bigdf2.json")
rm("bigdf.jlso")
rm("bigdf.bin")
rm("bigdf.arrow")

This notebook was generated using Literate.jl.