Constructors and conversion#

using DataFrames
using Random

Constructors#

In this section, you’ll see many ways to create a DataFrame using the DataFrame() constructor.

First, we could create an empty DataFrame.

DataFrame()
0×0 DataFrame

Or we could call the constructor using keyword arguments to add columns to the DataFrame.

DataFrame(A=1:3, B=rand(3), C=randstring.([3, 3, 3]), fixed=1)
3×4 DataFrame
RowABCfixed
Int64Float64StringInt64
110.9313437d71
220.83357smC1
330.459508oS61

note in column :fixed that scalars get automatically broadcasted. We can create a DataFrame from a dictionary, in which case keys from the dictionary will be sorted to create the DataFrame columns.

x = Dict("A" => [1, 2], "B" => [true, false], "C" => ['a', 'b'], "fixed" => Ref([1, 1]))
DataFrame(x)
2×4 DataFrame
RowABCfixed
Int64BoolCharArray…
11truea[1, 1]
22falseb[1, 1]

This time we used Ref to protect a vector from being treated as a column and forcing broadcasting it into every row of :fixed column (note that the [1,1] vector is aliased in each row).

Rather than explicitly creating a dictionary first, as above, we could pass DataFrame arguments with the syntax of dictionary key-value pairs.

Note that in this case, we use Symbols to denote the column names and arguments are not sorted. For example, :A, the symbol, produces A, the name of the first column here:

DataFrame(:A => [1, 2], :B => [true, false], :C => ['a', 'b'])
2×3 DataFrame
RowABC
Int64BoolChar
11truea
22falseb

Although, in general, using Symbols rather than strings to denote column names is preferred (as it is faster) DataFrames.jl accepts passing strings as column names, so this also works:

DataFrame("A" => [1, 2], "B" => [true, false], "C" => ['a', 'b'])
2×3 DataFrame
RowABC
Int64BoolChar
11truea
22falseb

You can also pass a vector of pairs, which is useful if it is constructed programatically:

DataFrame([:A => [1, 2], :B => [true, false], :C => ['a', 'b'], :fixed => "const"])
2×4 DataFrame
RowABCfixed
Int64BoolCharString
11trueaconst
22falsebconst

Here we create a DataFrame from a vector of vectors, and each vector becomes a column.

DataFrame([rand(3) for i in 1:3], :auto)
3×3 DataFrame
Rowx1x2x3
Float64Float64Float64
10.4598570.3796150.809887
20.8774660.2273150.204452
30.9185790.9933630.349277
DataFrame([rand(3) for i in 1:3], [:x1, :x2, :x3])
3×3 DataFrame
Rowx1x2x3
Float64Float64Float64
10.8581080.1194990.353078
20.754420.5405510.0184252
30.4157570.3442610.0770455
DataFrame([rand(3) for i in 1:3], ["x1", "x2", "x3"])
3×3 DataFrame
Rowx1x2x3
Float64Float64Float64
10.4086320.3681940.651141
20.4254640.06906460.999539
30.6928190.9347590.074886

As you can see you either pass a vector of column names as a second argument or :auto in which case column names are generated automatically. In particular it is not allowed to pass a vector of scalars to DataFrame constructor.

try
    DataFrame([1, 2, 3])
catch e
    show(e)
end
ArgumentError("'Vector{Int64}' iterates 'Int64' values, which doesn't satisfy the Tables.jl `AbstractRow` interface")

Instead use a transposed vector if you have a vector of single values (in this way you effectively pass a two dimensional array to the constructor which is supported the same way as in vector of vectors case).

DataFrame(permutedims([1, 2, 3]), :auto)
1×3 DataFrame
Rowx1x2x3
Int64Int64Int64
1123

You can also pass a vector of NamedTuples to construct a DataFrame:

v = [(a=1, b=2), (a=3, b=4)]
DataFrame(v)
2×2 DataFrame
Rowab
Int64Int64
112
234

Alternatively you can pass a NamedTuple of vectors:

n = (a=1:3, b=11:13)
DataFrame(n)
3×2 DataFrame
Rowab
Int64Int64
1111
2212
3313
DataFrame(rand(3, 4), :auto)
3×4 DataFrame
Rowx1x2x3x4
Float64Float64Float64Float64
10.5736580.6912780.3926940.152718
20.05069090.6726770.9571570.949021
30.4295740.7984470.7602030.835569

and here we do the same but also pass column names.

DataFrame(rand(3, 4), Symbol.('a':'d'))
3×4 DataFrame
Rowabcd
Float64Float64Float64Float64
10.475660.009751250.3836630.0221255
20.0224510.273920.2807850.859176
30.07214690.5718950.3307370.736976

or

DataFrame(rand(3, 4), string.('a':'d'))
3×4 DataFrame
Rowabcd
Float64Float64Float64Float64
10.03888810.837670.2603970.0666654
20.8985310.3524490.9787640.834269
30.02831870.5979550.2281030.955276

This is how you can create a data frame with no rows, but with predefined columns and their types:

DataFrame(A=Int[], B=Float64[], C=String[])
0×3 DataFrame
RowABC
Int64Float64String

Finally, we can create a DataFrame by copying an existing DataFrame. Note that copy also copies the vectors.

x = DataFrame(a=1:2, b='a':'b')
y = copy(x)
(x === y), isequal(x, y), (x.a == y.a), (x.a === y.a)
(false, true, true, false)

Calling DataFrame on a DataFrame object works like copy.

x = DataFrame(a=1:2, b='a':'b')
y = DataFrame(x)
(x === y), isequal(x, y), (x.a == y.a), (x.a === y.a)
(false, true, true, false)

You can avoid copying of columns of a data frame (if it is possible) by passing copycols=false keyword argument:

x = DataFrame(a=1:2, b='a':'b')
y = DataFrame(x, copycols=false)
(x === y), isequal(x, y), (x.a == y.a), (x.a === y.a)
(false, true, true, true)

The same rule applies to other constructors

a = [1, 2, 3]
df1 = DataFrame(a=a)
df2 = DataFrame(a=a, copycols=false)
df1.a === a, df2.a === a
(false, true)

You can create a similar uninitialized DataFrame based on an original one:

x = DataFrame(a=1, b=1.0)
1×2 DataFrame
Rowab
Int64Float64
111.0
similar(x)
1×2 DataFrame
Rowab
Int64Float64
11396949672763840.0

number of rows in a new DataFrame can be passed as a second argument

similar(x, 0)
0×2 DataFrame
Rowab
Int64Float64
similar(x, 2)
2×2 DataFrame
Rowab
Int64Float64
11396954953378566.90187e-310
21396954953508486.90187e-310

You can also create a new DataFrame from SubDataFrame or DataFrameRow (discussed in detail later in the tutorial; in particular although DataFrameRow is considered a 1-dimensional object similar to a NamedTuple it gets converted to a 1-row DataFrame for convenience)

x = DataFrame(a=1, b=1.0)
sdf = view(x, [1, 1], :)
2×2 SubDataFrame
Rowab
Int64Float64
111.0
211.0
typeof(sdf)
DataFrames.SubDataFrame{DataFrames.DataFrame, DataFrames.Index, Vector{Int64}}
DataFrame(sdf)
2×2 DataFrame
Rowab
Int64Float64
111.0
211.0
dfr = x[1, :]
DataFrameRow (2 columns)
Rowab
Int64Float64
111.0
DataFrame(dfr)
1×2 DataFrame
Rowab
Int64Float64
111.0

Conversion to a matrix#

Let’s start by creating a DataFrame with two rows and two columns.

x = DataFrame(x=1:2, y=["A", "B"])
2×2 DataFrame
Rowxy
Int64String
11A
22B

We can create a matrix by passing this DataFrame to Matrix or Array.

Matrix(x)
2×2 Matrix{Any}:
 1  "A"
 2  "B"
Array(x)
2×2 Matrix{Any}:
 1  "A"
 2  "B"

This would work even if the DataFrame had some missings:

x = DataFrame(x=1:2, y=[missing, "B"])
2×2 DataFrame
Rowxy
Int64String?
11missing
22B
Matrix(x)
2×2 Matrix{Any}:
 1  missing
 2  "B"

In the two previous matrix examples, Julia created matrices with elements of type Any. We can see more clearly that the type of matrix is inferred when we pass, for example, a DataFrame of integers to Matrix, creating a 2D Array of Int64s:

x = DataFrame(x=1:2, y=3:4)
2×2 DataFrame
Rowxy
Int64Int64
113
224
Matrix(x)
2×2 Matrix{Int64}:
 1  3
 2  4

In this next example, Julia correctly identifies that Union is needed to express the type of the resulting Matrix (which contains missings).

x = DataFrame(x=1:2, y=[missing, 4])
2×2 DataFrame
Rowxy
Int64Int64?
11missing
224
Matrix(x)
2×2 Matrix{Union{Missing, Int64}}:
 1   missing
 2  4

Note that we can’t force a conversion of missing values to Ints!

try
    Matrix{Int}(x)
catch e
    show(e)
end
ArgumentError("cannot convert a DataFrame containing missing values to Matrix{Int64} (found for column y)")

Iterating data frame by rows or columns#

Sometimes it is useful to create a wrapper around a DataFrame that produces its rows or columns. For iterating columns you can use the eachcol function.

ec = eachcol(x)
2×2 DataFrameColumns
Rowxy
Int64String
11A
22B

DataFrameColumns object behaves as a vector (note though it is not AbstractVector)

ec isa AbstractVector
false
ec[1]
2-element Vector{Int64}:
 1
 2

but you can also index into it using column names:

ec["x"]
2-element Vector{Int64}:
 1
 2

similarly eachrow creates a DataFrameRows object that is a vector of its rows

er = eachrow(x)
2×2 DataFrameRows
Rowxy
Int64String
11A
22B

DataFrameRows is an AbstractVector

er isa AbstractVector
true
er[end]
DataFrameRow (2 columns)
Rowxy
Int64String
22B

Note that both data frame and also DataFrameColumns and DataFrameRows objects are not type stable (they do not know the types of their columns). This is useful to avoid compilation cost if you have very wide data frames with heterogenous column types.

However, often (especially if a data frame is narrows) it is useful to create a lazy iterator that produces NamedTuples for each row of the DataFrame. Its key benefit is that it is type stable (so it is useful when you want to perform some operations in a fast way on a small subset of columns of a DataFrame - this strategy is often used internally by DataFrames.jl package):

nti = Tables.namedtupleiterator(x)
Tables.NamedTupleIterator{Tables.Schema{(:x, :y), Tuple{Int64, String}}, Tables.RowIterator{@NamedTuple{x::Vector{Int64}, y::Vector{String}}}}(Tables.RowIterator{@NamedTuple{x::Vector{Int64}, y::Vector{String}}}((x = [1, 2], y = ["A", "B"]), 2))
for row in enumerate(nti)
    @show row
end
row = (1, (x = 1, y = "A"))
row = (2, (x = 2, y = "B"))

similarly to the previous options you can easily convert NamedTupleIterator back to a DataFrame.

DataFrame(nti)
2×2 DataFrame
Rowxy
Int64String
11A
22B

Handling of duplicate column names#

We can pass the makeunique keyword argument to allow passing duplicate names (they get deduplicated)

df = DataFrame(:a => 1, :a => 2, :a_1 => 3; makeunique=true)
1×3 DataFrame
Rowaa_2a_1
Int64Int64Int64
1123

Otherwise, duplicates are not allowed.

try
    df = DataFrame(:a => 1, :a => 2, :a_1 => 3)
catch e
    show(e)
end
ArgumentError("Duplicate variable names: :a. Pass makeunique=true to make them unique using a suffix automatically.")

Observe that currently nothing is not printed when displaying a DataFrame in Jupyter Notebook:

df = DataFrame(x=[1, nothing], y=[nothing, "a"], z=[missing, "c"])
2×3 DataFrame
Rowxyz
Union…Union…String?
11missing
2ac

Finally you can use empty and empty! functions to remove all rows from a data frame:

empty(df)
df
2×3 DataFrame
Rowxyz
Union…Union…String?
11missing
2ac
empty!(df)
df
0×3 DataFrame
Rowxyz
Union…Union…String?

This notebook was generated using Literate.jl.