Event-driven continuous-time multiagent model#

The spatial rock-paper-scissors (RPS) is an ABM with the following rules:

  • Agents can be any of three “kinds”: Rock, Paper, or Scissors.

  • Agents live in a 2D periodic grid space allowing only one agent per cell.

  • When an agent activates, it can do one of three actions:

    1. Attack: choose a random nearby agent and attack it. If the agent loses the RPS game it gets removed.

    2. Move: choose a random nearby position. If it is empty move to it, otherwise swap positions with the agent there.

    3. Reproduce: choose a random empty nearby position (if any exist). Generate there a new agent of the same type.

using Agents
using Random
using LinearAlgebra
using Base64
using Agents.DataFrames
using CairoMakie
CairoMakie.activate!(px_per_unit = 1.0)

The helper function is adapted from Agents.abmvideo and correctly displays animations in Jupyter notebooks

function abmvio(model;
    dt = 1, framerate = 30, frames = 300, title = "", showstep = true,
    figure = (size = (600, 600),), axis = NamedTuple(),
    recordkwargs = (compression = 23, format ="mp4"), kwargs...
)
    # title and steps
    abmtime_obs = Observable(abmtime(model))
    if title  "" && showstep
        t = lift(x -> title*", time = "*string(x), abmtime_obs)
    elseif showstep
        t = lift(x -> "time = "*string(x), abmtime_obs)
    else
        t = title
    end

    axis = (title = t, titlealign = :left, axis...)
    # First frame
    fig, ax, abmobs = abmplot(model; add_controls = false, warn_deprecation = false, figure, axis, kwargs...)
    resize_to_layout!(fig)
    # Animation
    Makie.Record(fig; framerate, recordkwargs...) do io
        for j in 1:frames-1
            recordframe!(io)
            Agents.step!(abmobs, dt)
            abmtime_obs[] = abmtime(model)
        end
        recordframe!(io)
    end
end
abmvio (generic function with 1 method)

Define rock, paper, and scissors (RPS) agents. One can use variant(agent) to see the agent type.

@agent struct Rock(GridAgent{2}) end
@agent struct Paper(GridAgent{2}) end
@agent struct Scissors(GridAgent{2}) end
@multiagent RPS(Rock, Paper, Scissors)

Agent actions

function attack!(agent, model)
    # Randomly pick a nearby agent
    contender = random_nearby_agent(agent, model)
    isnothing(contender) && return # do nothing if there isn't anyone nearby
    # The attacking action will be dispatched to the following methods.
    attack!(variant(agent), variant(contender), contender, model)
    return nothing
end

attack!(::AbstractAgent, ::AbstractAgent, contender, model) = nothing
attack!(::Rock, ::Scissors, contender, model) = remove_agent!(contender, model)
attack!(::Scissors, ::Paper, contender, model) = remove_agent!(contender, model)
attack!(::Paper, ::Rock, contender, model) = remove_agent!(contender, model)
attack! (generic function with 5 methods)

Move actions use move_agent! and swap_agents! functions

function move!(agent, model)
    rand_pos = random_nearby_position(agent.pos, model)
    if isempty(rand_pos, model)
        move_agent!(agent, rand_pos, model)
    else
        occupant_id = id_in_position(rand_pos, model)
        occupant = model[occupant_id]
        swap_agents!(agent, occupant, model)
    end
    return nothing
end
move! (generic function with 1 method)

Reproduce actions use replicate! function

function reproduce!(agent, model)
    pos = random_nearby_position(agent, model, 1, pos -> isempty(pos, model))
    isnothing(pos) && return
    # pass target position as a keyword argument
    replicate!(agent, model; pos)
    return nothing
end
reproduce! (generic function with 1 method)

Defining the propensity (“rate” in Gillespie stochastic simulations) and timing of the events

attack_propensity = 1.0
movement_propensity = 0.5
reproduction_propensity(agent, model) = cos(abmtime(model))^2
reproduction_propensity (generic function with 1 method)

Register events with AgentEvent

attack_event = AgentEvent(action! = attack!, propensity = attack_propensity)
reproduction_event = AgentEvent(action! = reproduce!, propensity = reproduction_propensity)
Agents.AgentEvent{typeof(Main.var"##229".reproduce!), typeof(Main.var"##229".reproduction_propensity), DataType, typeof(Agents.exp_propensity)}(Main.var"##229".reproduce!, Main.var"##229".reproduction_propensity, Agents.AbstractAgent, Agents.exp_propensity)

We want a different distribution other than exponential distribution for movement time

function movement_time(agent, model, propensity)
    # Make time around 1
    t = 0.1 * randn(abmrng(model)) + 1
    return clamp(t, 0, Inf)
end
movement_time (generic function with 1 method)

Also rocks do not move

movement_event = AgentEvent(
    action! = move!, propensity = movement_propensity,
    types = Union{Scissors, Paper}, timing = movement_time
)
Agents.AgentEvent{typeof(Main.var"##229".move!), Float64, Union, typeof(Main.var"##229".movement_time)}(Main.var"##229".move!, 0.5, Union{Main.var"##229".Paper, Main.var"##229".Scissors}, Main.var"##229".movement_time)

Collect all events

events = (attack_event, reproduction_event, movement_event)
(Agents.AgentEvent{typeof(Main.var"##229".attack!), Float64, DataType, typeof(Agents.exp_propensity)}(Main.var"##229".attack!, 1.0, Agents.AbstractAgent, Agents.exp_propensity), Agents.AgentEvent{typeof(Main.var"##229".reproduce!), typeof(Main.var"##229".reproduction_propensity), DataType, typeof(Agents.exp_propensity)}(Main.var"##229".reproduce!, Main.var"##229".reproduction_propensity, Agents.AbstractAgent, Agents.exp_propensity), Agents.AgentEvent{typeof(Main.var"##229".move!), Float64, Union, typeof(Main.var"##229".movement_time)}(Main.var"##229".move!, 0.5, Union{Main.var"##229".Paper, Main.var"##229".Scissors}, Main.var"##229".movement_time))

Model function EventQueueABM for an event-driven ABM

const alltypes = (Rock, Paper, Scissors)

function initialize_rps(; n = 100, nx = n, ny = n, seed = 42)
    space = GridSpaceSingle((nx, ny))
    rng = Xoshiro(seed)
    model = EventQueueABM(RPS, events, space; rng, warn = false)
    for p in positions(model)
        # Randomly assign one of the agent
        type = rand(abmrng(model), alltypes)
        add_agent!(p, constructor(RPS, type), model)
    end
    return model
end
initialize_rps (generic function with 1 method)

Have a look at the event queue

model = initialize_rps()
abmqueue(model)
DataStructures.BinaryHeap{Pair{Tuple{Int64, Int64}, Float64}, Base.Order.By{typeof(last), DataStructures.FasterForward}}(Base.Order.By{typeof(last), DataStructures.FasterForward}(last, DataStructures.FasterForward()), [(6080, 1) => 2.9790681020079457e-6, (3987, 1) => 0.0003364593569030146, (6221, 2) => 0.0004887948187761659, (8424, 1) => 0.0006778319693496694, (5035, 1) => 0.0012044922191219774, (7014, 2) => 0.0005771225059120387, (3301, 2) => 0.0011396494447446436, (2505, 1) => 0.0014309955844005063, (5041, 2) => 0.001449028423933035, (5539, 2) => 0.0024520873429744127  …  (9990, 1) => 1.0666363792018059, (9992, 2) => 0.7429399475482082, (9993, 1) => 1.9378465659189394, (4997, 1) => 1.7907183401427267, (2496, 1) => 0.5304394096759053, (2499, 1) => 2.7442278746073216, (4998, 3) => 1.0804360033507288, (4999, 1) => 5.80807081086072, (9998, 1) => 0.9433255253597445, (1250, 3) => 1.258669914970242])

The time in EventQueueABM is continuous, so we can pass real-valued time.

step!(model, 123.456)
nagents(model)
9664

The step! function also accepts a terminating condition.

function terminate(model, t)
    willterm = length(allagents(model)) < 5000
    return willterm || (t > 1000.0)
end

model = initialize_rps()
step!(model, terminate)
abmtime(model)
1000.0000829102537

Data collection#

  • adata: aggregated data to extract information from the execution stats

  • adf: agent data frame

model = initialize_rps()
adata = [(a -> variantof(a) === X, count) for X in alltypes]

adf, mdf = run!(model, 100.0; adata, when = 0.5, dt = 0.01)
adf[1:10, :]
10×4 DataFrame
Rowtimecount_#35_X=Main.var"##229".Rockcount_#35_X=Main.var"##229".Papercount_#35_X=Main.var"##229".Scissors
Float64Int64Int64Int64
10.0329333723335
20.5322632623156
31.0321332132989
41.5316531262860
52.0308830012679
62.51297128652481
73.02298128312378
83.53309729832377
94.04318030852408
104.55323730802357

Visualize population change#

tvec = adf[!, :time]  ## time as x axis
populations = adf[:, Not(:time)]  ## agents as data
alabels = ["rocks", "papers", "scissors"]

fig = Figure();
ax = Axis(fig[1,1]; xlabel = "time", ylabel = "population")
for (i, l) in enumerate(alabels)
    lines!(ax, tvec, populations[!, i]; label = l)
end
axislegend(ax)
fig
_images/082d51e8c98b9223bf0f65e8e7ad9ef298c744848b18590283e6f6cb51fa1920.png

Visualize agent distribution#

const colormap = Dict(Rock => "black", Scissors => "gray", Paper => "orange")
agent_color(agent) = colormap[variantof(agent)]
plotkw = (agent_color, agent_marker = :rect, agent_size = 5)
fig, ax, abmobs = abmplot(model; plotkw...)

fig
_images/52805bf570f8daf6cceb16ad2d9a4c575ab067b40ef487e67ecfa391f22e2013.png

Animation#

model = initialize_rps()
vio = abmvio( model;
    dt = 0.5, frames = 300,
    title = "Rock Paper Scissors (event based)",
    plotkw...,
)

save("rps.mp4", vio)
vio |> display

This notebook was generated using Literate.jl.