Event-driven continuous-time multiagent model#
The spatial rock-paper-scissors (RPS) is an ABM with the following rules:
Agents can be any of three “kinds”: Rock, Paper, or Scissors.
Agents live in a 2D periodic grid space allowing only one agent per cell.
When an agent activates, it can do one of three actions:
Attack: choose a random nearby agent and attack it. If the agent loses the RPS game it gets removed.
Move: choose a random nearby position. If it is empty move to it, otherwise swap positions with the agent there.
Reproduce: choose a random empty nearby position (if any exist). Generate there a new agent of the same type.
using Agents
using Random
using LinearAlgebra
using Base64
using Agents.DataFrames
using CairoMakie
CairoMakie.activate!(px_per_unit = 1.0)
The helper function is adapted from Agents.abmvideo
and correctly displays animations in Jupyter notebooks
function abmvio(model;
dt = 1, framerate = 30, frames = 300, title = "", showstep = true,
figure = (size = (600, 600),), axis = NamedTuple(),
recordkwargs = (compression = 23, format ="mp4"), kwargs...
)
# title and steps
abmtime_obs = Observable(abmtime(model))
if title ≠ "" && showstep
t = lift(x -> title*", time = "*string(x), abmtime_obs)
elseif showstep
t = lift(x -> "time = "*string(x), abmtime_obs)
else
t = title
end
axis = (title = t, titlealign = :left, axis...)
# First frame
fig, ax, abmobs = abmplot(model; add_controls = false, warn_deprecation = false, figure, axis, kwargs...)
resize_to_layout!(fig)
# Animation
Makie.Record(fig; framerate, recordkwargs...) do io
for j in 1:frames-1
recordframe!(io)
Agents.step!(abmobs, dt)
abmtime_obs[] = abmtime(model)
end
recordframe!(io)
end
end
abmvio (generic function with 1 method)
Define rock, paper, and scissors (RPS) agents. One can use variant(agent)
to see the agent type.
@agent struct Rock(GridAgent{2}) end
@agent struct Paper(GridAgent{2}) end
@agent struct Scissors(GridAgent{2}) end
@multiagent RPS(Rock, Paper, Scissors)
Agent actions
function attack!(agent, model)
# Randomly pick a nearby agent
contender = random_nearby_agent(agent, model)
isnothing(contender) && return # do nothing if there isn't anyone nearby
# The attacking action will be dispatched to the following methods.
attack!(variant(agent), variant(contender), contender, model)
return nothing
end
attack!(::AbstractAgent, ::AbstractAgent, contender, model) = nothing
attack!(::Rock, ::Scissors, contender, model) = remove_agent!(contender, model)
attack!(::Scissors, ::Paper, contender, model) = remove_agent!(contender, model)
attack!(::Paper, ::Rock, contender, model) = remove_agent!(contender, model)
attack! (generic function with 5 methods)
Move actions use move_agent!
and swap_agents!
functions
function move!(agent, model)
rand_pos = random_nearby_position(agent.pos, model)
if isempty(rand_pos, model)
move_agent!(agent, rand_pos, model)
else
occupant_id = id_in_position(rand_pos, model)
occupant = model[occupant_id]
swap_agents!(agent, occupant, model)
end
return nothing
end
move! (generic function with 1 method)
Reproduce actions use replicate!
function
function reproduce!(agent, model)
pos = random_nearby_position(agent, model, 1, pos -> isempty(pos, model))
isnothing(pos) && return
# pass target position as a keyword argument
replicate!(agent, model; pos)
return nothing
end
reproduce! (generic function with 1 method)
Defining the propensity (“rate” in Gillespie stochastic simulations) and timing of the events
attack_propensity = 1.0
movement_propensity = 0.5
reproduction_propensity(agent, model) = cos(abmtime(model))^2
reproduction_propensity (generic function with 1 method)
Register events with AgentEvent
attack_event = AgentEvent(action! = attack!, propensity = attack_propensity)
reproduction_event = AgentEvent(action! = reproduce!, propensity = reproduction_propensity)
Agents.AgentEvent{typeof(Main.var"##229".reproduce!), typeof(Main.var"##229".reproduction_propensity), DataType, typeof(Agents.exp_propensity)}(Main.var"##229".reproduce!, Main.var"##229".reproduction_propensity, Agents.AbstractAgent, Agents.exp_propensity)
We want a different distribution other than exponential distribution for movement time
function movement_time(agent, model, propensity)
# Make time around 1
t = 0.1 * randn(abmrng(model)) + 1
return clamp(t, 0, Inf)
end
movement_time (generic function with 1 method)
Also rocks do not move
movement_event = AgentEvent(
action! = move!, propensity = movement_propensity,
types = Union{Scissors, Paper}, timing = movement_time
)
Agents.AgentEvent{typeof(Main.var"##229".move!), Float64, Union, typeof(Main.var"##229".movement_time)}(Main.var"##229".move!, 0.5, Union{Main.var"##229".Paper, Main.var"##229".Scissors}, Main.var"##229".movement_time)
Collect all events
events = (attack_event, reproduction_event, movement_event)
(Agents.AgentEvent{typeof(Main.var"##229".attack!), Float64, DataType, typeof(Agents.exp_propensity)}(Main.var"##229".attack!, 1.0, Agents.AbstractAgent, Agents.exp_propensity), Agents.AgentEvent{typeof(Main.var"##229".reproduce!), typeof(Main.var"##229".reproduction_propensity), DataType, typeof(Agents.exp_propensity)}(Main.var"##229".reproduce!, Main.var"##229".reproduction_propensity, Agents.AbstractAgent, Agents.exp_propensity), Agents.AgentEvent{typeof(Main.var"##229".move!), Float64, Union, typeof(Main.var"##229".movement_time)}(Main.var"##229".move!, 0.5, Union{Main.var"##229".Paper, Main.var"##229".Scissors}, Main.var"##229".movement_time))
Model function EventQueueABM
for an event-driven ABM
const alltypes = (Rock, Paper, Scissors)
function initialize_rps(; n = 100, nx = n, ny = n, seed = 42)
space = GridSpaceSingle((nx, ny))
rng = Xoshiro(seed)
model = EventQueueABM(RPS, events, space; rng, warn = false)
for p in positions(model)
# Randomly assign one of the agent
type = rand(abmrng(model), alltypes)
add_agent!(p, constructor(RPS, type), model)
end
return model
end
initialize_rps (generic function with 1 method)
Have a look at the event queue
model = initialize_rps()
abmqueue(model)
DataStructures.BinaryHeap{Pair{Tuple{Int64, Int64}, Float64}, Base.Order.By{typeof(last), DataStructures.FasterForward}}(Base.Order.By{typeof(last), DataStructures.FasterForward}(last, DataStructures.FasterForward()), [(6080, 1) => 2.9790681020079457e-6, (3987, 1) => 0.0003364593569030146, (6221, 2) => 0.0004887948187761659, (8424, 1) => 0.0006778319693496694, (5035, 1) => 0.0012044922191219774, (7014, 2) => 0.0005771225059120387, (3301, 2) => 0.0011396494447446436, (2505, 1) => 0.0014309955844005063, (5041, 2) => 0.001449028423933035, (5539, 2) => 0.0024520873429744127 … (9990, 1) => 1.0666363792018059, (9992, 2) => 0.7429399475482082, (9993, 1) => 1.9378465659189394, (4997, 1) => 1.7907183401427267, (2496, 1) => 0.5304394096759053, (2499, 1) => 2.7442278746073216, (4998, 3) => 1.0804360033507288, (4999, 1) => 5.80807081086072, (9998, 1) => 0.9433255253597445, (1250, 3) => 1.258669914970242])
The time in EventQueueABM
is continuous, so we can pass real-valued time.
step!(model, 123.456)
nagents(model)
9664
The step!
function also accepts a terminating condition.
function terminate(model, t)
willterm = length(allagents(model)) < 5000
return willterm || (t > 1000.0)
end
model = initialize_rps()
step!(model, terminate)
abmtime(model)
1000.0000829102537
Data collection#
adata: aggregated data to extract information from the execution stats
adf: agent data frame
model = initialize_rps()
adata = [(a -> variantof(a) === X, count) for X in alltypes]
adf, mdf = run!(model, 100.0; adata, when = 0.5, dt = 0.01)
adf[1:10, :]
Row | time | count_#35_X=Main.var"##229".Rock | count_#35_X=Main.var"##229".Paper | count_#35_X=Main.var"##229".Scissors |
---|---|---|---|---|
Float64 | Int64 | Int64 | Int64 | |
1 | 0.0 | 3293 | 3372 | 3335 |
2 | 0.5 | 3226 | 3262 | 3156 |
3 | 1.0 | 3213 | 3213 | 2989 |
4 | 1.5 | 3165 | 3126 | 2860 |
5 | 2.0 | 3088 | 3001 | 2679 |
6 | 2.51 | 2971 | 2865 | 2481 |
7 | 3.02 | 2981 | 2831 | 2378 |
8 | 3.53 | 3097 | 2983 | 2377 |
9 | 4.04 | 3180 | 3085 | 2408 |
10 | 4.55 | 3237 | 3080 | 2357 |
Visualize population change#
tvec = adf[!, :time] ## time as x axis
populations = adf[:, Not(:time)] ## agents as data
alabels = ["rocks", "papers", "scissors"]
fig = Figure();
ax = Axis(fig[1,1]; xlabel = "time", ylabel = "population")
for (i, l) in enumerate(alabels)
lines!(ax, tvec, populations[!, i]; label = l)
end
axislegend(ax)
fig
Visualize agent distribution#
const colormap = Dict(Rock => "black", Scissors => "gray", Paper => "orange")
agent_color(agent) = colormap[variantof(agent)]
plotkw = (agent_color, agent_marker = :rect, agent_size = 5)
fig, ax, abmobs = abmplot(model; plotkw...)
fig
Animation#
model = initialize_rps()
vio = abmvio( model;
dt = 0.5, frames = 300,
title = "Rock Paper Scissors (event based)",
plotkw...,
)
save("rps.mp4", vio)
vio |> display
This notebook was generated using Literate.jl.