2D Brusselator PDE#
The Brusselator PDE:
\[\begin{split}
\begin{align}
\frac{\partial u}{\partial t} &= 1 + u^2v - 4.4u + \alpha (\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) + f(x, y, t) \\
\frac{\partial v}{\partial t} &= 3.4u - u^2 v + \alpha (\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})
\end{align}
\end{split}\]
where
\[\begin{split}
f(x, y, t) =
\begin{cases}
5 \qquad \text{if} (x - 0.3)^2 + (y - 0.6)^2 \leq 0.1^2 \ \text{and} \ t \geq 1.1 \\
0 \qquad \text{otherwise}
\end{cases}
\end{split}\]
and the initial conditions are
\[\begin{split}
\begin{align}
u(x, y, 0) &= 22(y(1-y))^{1.5} \\
v(x, y, 0) &= 27(x(1-x))^{1.5}
\end{align}
\end{split}\]
with the periodic boundary condition
\[\begin{split}
\begin{align}
u(x+1, y, 0) &= u(x, y, t) \\
u(x, y+1, 0) &= u(x, y, t)
\end{align}
\end{split}\]
on a time span of \(t \in [0, 11.5]\).
using ModelingToolkit
using MethodOfLines
using OrdinaryDiffEq
using DomainSets
using Plots
Setup parameters, variables, and differential operators
@independent_variables x y t
@variables u(..) v(..)
Dt = Differential(t)
Dx = Differential(x)
Dy = Differential(y)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
∇²(u) = Dxx(u) + Dyy(u)
∇² (generic function with 1 method)
Dynamics on each grid point
brusselator_f(x, y, t) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * (t >= 1.1) * 5
x_min = y_min = t_min = 0.0
x_max = y_max = 1.0
t_max = 11.5
α = 10.0
u0(x, y, t) = 22 * (y * (1 - y))^(3 / 2)
v0(x, y, t) = 27 * (x * (1 - x))^(3 / 2)
v0 (generic function with 1 method)
PDEs
eqs = [
Dt(u(x, y, t)) ~ 1.0 + v(x, y, t) * u(x, y, t)^2 - 4.4 * u(x, y, t) + α * ∇²(u(x, y, t)) + brusselator_f(x, y, t),
Dt(v(x, y, t)) ~ 3.4 * u(x, y, t) - v(x, y, t) * u(x, y, t)^2 + α * ∇²(v(x, y, t))
]
\[\begin{split} \begin{align}
\frac{\mathrm{d}}{\mathrm{d}t} u\left( x, y, t \right) &= 1 + 10 \left( \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} u\left( x, y, t \right) + \frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}y} u\left( x, y, t \right) \right) - 4.4 u\left( x, y, t \right) + 5 \left( \left( -0.3 + x \right)^{2} + \left( -0.6 + y \right)^{2} \leq 0.01 \right) \left( t \geq 1.1 \right) + \left( u\left( x, y, t \right) \right)^{2} v\left( x, y, t \right) \\
\frac{\mathrm{d}}{\mathrm{d}t} v\left( x, y, t \right) &= 3.4 u\left( x, y, t \right) + 10 \left( \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} v\left( x, y, t \right) + \frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}y} v\left( x, y, t \right) \right) - \left( u\left( x, y, t \right) \right)^{2} v\left( x, y, t \right)
\end{align}
\end{split}\]
Space and time domains
domains = [
x ∈ Interval(x_min, x_max),
y ∈ Interval(y_min, y_max),
t ∈ Interval(t_min, t_max)
]
3-element Vector{Symbolics.VarDomainPairing}:
Symbolics.VarDomainPairing(x, 0.0 .. 1.0)
Symbolics.VarDomainPairing(y, 0.0 .. 1.0)
Symbolics.VarDomainPairing(t, 0.0 .. 11.5)
Periodic boundary conditions
bcs = [
u(x, y, 0) ~ u0(x, y, 0),
u(0, y, t) ~ u(1, y, t),
u(x, 0, t) ~ u(x, 1, t),
v(x, y, 0) ~ v0(x, y, 0),
v(0, y, t) ~ v(1, y, t),
v(x, 0, t) ~ v(x, 1, t)
]
\[\begin{split} \begin{align}
u\left( x, y, 0 \right) &= 22 \left( 1 - y \right)^{1.5} y^{1.5} \\
u\left( 0, y, t \right) &= u\left( 1, y, t \right) \\
u\left( x, 0, t \right) &= u\left( x, 1, t \right) \\
v\left( x, y, 0 \right) &= 27 x^{1.5} \left( 1 - x \right)^{1.5} \\
v\left( 0, y, t \right) &= v\left( 1, y, t \right) \\
v\left( x, 0, t \right) &= v\left( x, 1, t \right)
\end{align}
\end{split}\]
PDE system
@named pdesys = PDESystem(eqs, bcs, domains, [x, y, t], [u(x, y, t), v(x, y, t)])
\[\begin{split} \begin{align}
\frac{\mathrm{d}}{\mathrm{d}t} u\left( x, y, t \right) &= 1 + 10 \left( \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} u\left( x, y, t \right) + \frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}y} u\left( x, y, t \right) \right) - 4.4 u\left( x, y, t \right) + 5 \left( \left( -0.3 + x \right)^{2} + \left( -0.6 + y \right)^{2} \leq 0.01 \right) \left( t \geq 1.1 \right) + \left( u\left( x, y, t \right) \right)^{2} v\left( x, y, t \right) \\
\frac{\mathrm{d}}{\mathrm{d}t} v\left( x, y, t \right) &= 3.4 u\left( x, y, t \right) + 10 \left( \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} v\left( x, y, t \right) + \frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}y} v\left( x, y, t \right) \right) - \left( u\left( x, y, t \right) \right)^{2} v\left( x, y, t \right)
\end{align}
\end{split}\]
Discretization to an ODE system
disc = let N = 32, order = 2
MOLFiniteDifference([x=>N, y=>N], t, approx_order=order)
end
prob = discretize(pdesys, disc)
┌ Warning: The system contains interface boundaries, which are not compatible with system transformation. The system will not be transformed. Please post an issue if you need this feature.
└ @ MethodOfLines ~/.julia/packages/MethodOfLines/EiZyI/src/system_parsing/pde_system_transformation.jl:43
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true
timespan: (0.0, 11.5)
u0: 1922-element Vector{Float64}:
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
0.12134432813715874
⋮
2.262066755474226
1.9735248771761977
1.6650051119921914
1.3433640166822105
1.0172186542655526
0.6977464117458192
0.4003323380813969
0.14892258453196736
0.0
Solvers: https://diffeq.sciml.ai/stable/solvers/ode_solve/
alg = TRBDF2()
@time sol = solve(prob, alg, saveat=0.1)
262.535893 seconds (508.55 M allocations: 25.780 GiB, 4.33% gc time, 92.56% compilation time)
retcode: Success
Interpolation: Dict{Symbolics.Num, Interpolations.GriddedInterpolation{Float64, 3, Array{Float64, 3}, Interpolations.Gridded{Interpolations.Linear{Interpolations.Throw{Interpolations.OnGrid}}}, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}}}}
t: 116-element Vector{Float64}:
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
⋮
10.7
10.8
10.9
11.0
11.1
11.2
11.3
11.4
11.5ivs: 3-element Vector{SymbolicUtils.BasicSymbolic{Real}}:
t
x
ydomain:([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 … 10.6, 10.7, 10.8, 10.9, 11.0, 11.1, 11.2, 11.3, 11.4, 11.5], 0.0:0.03225806451612903:1.0, 0.0:0.03225806451612903:1.0)
u: Dict{Symbolics.Num, Array{Float64, 3}} with 2 entries:
u(x, y, t) => [0.0 0.121344 … 0.121344 0.0; 0.0 0.121344 … 0.121344 0.0; … ; …
v(x, y, t) => [0.0 0.0 … 0.0 0.0; 0.148923 0.148923 … 0.148923 0.148923; … ; …
Extract data
discrete_x = sol[x]
discrete_y = sol[y]
discrete_t = sol[t]
solu = sol[u(x, y, t)]
solv = sol[v(x, y, t)]
umax = maximum(maximum, solu)
vmax = maximum(maximum, solv)
4.966509417157691
Visualization#
Interval == 2:end
since in periodic condition, end == 1
anim = @animate for k in eachindex(discrete_t)
heatmap(solu[2:end, 2:end, k], title="u @ t=$(discrete_t[k])", clims = (0.0, umax))
end
mp4(anim, fps = 8)
[ Info: Saved animation to /home/runner/work/jl-pde/jl-pde/.cache/docs/tmp.mp4
anim = @animate for k in eachindex(discrete_t)
heatmap(solv[2:end, 2:end, k], title="v @ t=$(discrete_t[k])", clims = (0.0, vmax))
end
mp4(anim, fps = 8)
[ Info: Saved animation to /home/runner/work/jl-pde/jl-pde/.cache/docs/tmp.mp4
This notebook was generated using Literate.jl.