UDEs#
Universal Differential Equations (UDEs) are hybrids of differential equations and neural networks.
SciML/DiffEqFlux.jl : fusing differential equations (
DifferentialEquations.jl) and neural networks (Lux.jl).SciML/NeuralPDE.jl : physics-Informed Neural Networks (PINN) Solvers, learning and building the equations from the ground up.
NeuralPDE.jlis slower thanDiffEqFlux.jl.
Runtime information#
using InteractiveUtils
InteractiveUtils.versioninfo()
Julia Version 1.12.2
Commit ca9b6662be4 (2025-11-20 16:25 UTC)
Build Info:
Official https://julialang.org release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-18.1.7 (ORCJIT, znver3)
GC: Built with stock GC
Threads: 4 default, 1 interactive, 4 GC (on 4 virtual cores)
Environment:
JULIA_CPU_TARGET = generic;icelake-server,clone_all;znver3,clone_all
JULIA_CONDAPKG_OFFLINE = true
JULIA_CONDAPKG_BACKEND = Null
JULIA_CI = true
LD_LIBRARY_PATH = /opt/hostedtoolcache/Python/3.13.9/x64/lib
JULIA_NUM_THREADS = auto
using Pkg
Pkg.status()
Status `~/work/jl-ude/jl-ude/Project.toml`
[b0b7db55] ComponentArrays v0.15.30
⌃ [aae7a2af] DiffEqFlux v4.4.0
[5b8099bc] DomainSets v0.7.16
[7da242da] Enzyme v0.13.108
[f6369f11] ForwardDiff v1.3.0
[d3d80556] LineSearches v7.5.1
⌃ [b2108857] Lux v1.21.1
[961ee093] ModelingToolkit v10.30.0
[315f7962] NeuralPDE v5.20.0
⌅ [7f7a1694] Optimization v4.8.0
⌃ [36348300] OptimizationOptimJL v0.4.5
⌃ [42dfb2eb] OptimizationOptimisers v0.3.11
⌃ [500b13db] OptimizationPolyalgorithms v0.3.1
[1dea7af3] OrdinaryDiffEq v6.103.0
[91a5bcdd] Plots v1.41.2
[37e2e46d] LinearAlgebra v1.12.0
[9a3f8284] Random v1.11.0
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated`
This notebook was generated using Literate.jl.