Solving PDEs with ModelingToolkit and NeuralPDE#
Solving Poisson PDE Systems (https://docs.sciml.ai/NeuralPDE/stable/tutorials/pdesystem/)
\[
\partial^{2}_{x}u(x,y) + \partial^{2}_{y}u(x,y) = -\sin (\pi x) \sin (\pi y)
\]
with boundary conditions
\[\begin{split}
\begin{align}
u(0, y) &= 0 \\
u(1, y) &= 0 \\
u(x, 0) &= 0 \\
u(x, 1) &= 0 \\
\end{align}
\end{split}\]
where
\(x ∈ [0, 1], y ∈ [0, 1]\)
using NeuralPDE
using Lux
using Optimization
using OptimizationOptimJL
using ModelingToolkit
using ModelingToolkit: Interval
using LineSearches
using Plots
@parameters x y
@variables u(..)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
Differential(y) ∘ Differential(y)
2D PDE
eq = Dxx(u(x, y)) + Dyy(u(x, y)) ~ -sinpi(x) * sinpi(y)
\[ \begin{equation}
\frac{\mathrm{d}}{\mathrm{d}y} \frac{\mathrm{d}}{\mathrm{d}y} u\left( x, y \right) + \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}x} u\left( x, y \right) = - sinpi\left( x \right) sinpi\left( y \right)
\end{equation}
\]
Boundary conditions
bcs = [
u(0, y) ~ 0.0,
u(1, y) ~ 0.0,
u(x, 0) ~ 0.0,
u(x, 1) ~ 0.0
]
\[\begin{split} \begin{align}
u\left( 0, y \right) &= 0 \\
u\left( 1, y \right) &= 0 \\
u\left( x, 0 \right) &= 0 \\
u\left( x, 1 \right) &= 0
\end{align}
\end{split}\]
Space domains
domains = [
x ∈ Interval(0.0, 1.0),
y ∈ Interval(0.0, 1.0)
]
2-element Vector{Symbolics.VarDomainPairing}:
Symbolics.VarDomainPairing(x, 0.0 .. 1.0)
Symbolics.VarDomainPairing(y, 0.0 .. 1.0)
Build a neural network for the PDE solver.
Input: 2 dimensions.
Hidden layers: 16 neurons * 2 layers.
Output: single output u(x, y)
dim = 2
chain = Lux.Chain(Dense(dim, 16, Lux.σ), Dense(16, 16, Lux.σ), Dense(16, 1))
Chain(
layer_1 = Dense(2 => 16, σ), # 48 parameters
layer_2 = Dense(16 => 16, σ), # 272 parameters
layer_3 = Dense(16 => 1), # 17 parameters
) # Total: 337 parameters,
# plus 0 states.
Discretization method usesPhysicsInformedNN()
(PINN).
dx = 0.05
discretization = PhysicsInformedNN(chain, QuadratureTraining(; batch = 200, abstol = 1e-6, reltol = 1e-6))
NeuralPDE.PhysicsInformedNN{Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, NeuralPDE.QuadratureTraining{Float64, Integrals.CubatureJLh}, Nothing, NeuralPDE.Phi{Lux.StatefulLuxLayer{Static.True, Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, Nothing, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}}}, typeof(NeuralPDE.numeric_derivative), Bool, Nothing, Nothing, Nothing, Base.RefValue{Int64}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}}(Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}((layer_1 = Dense(2 => 16, σ), layer_2 = Dense(16 => 16, σ), layer_3 = Dense(16 => 1)), nothing), NeuralPDE.QuadratureTraining{Float64, Integrals.CubatureJLh}(Integrals.CubatureJLh(0), 1.0e-6, 1.0e-6, 1000, 200), nothing, NeuralPDE.Phi{Lux.StatefulLuxLayer{Static.True, Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, Nothing, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}}}(Lux.StatefulLuxLayer{Static.True, Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}, Nothing, @NamedTuple{layer_1::@NamedTuple{}, layer_2::@NamedTuple{}, layer_3::@NamedTuple{}}}(Lux.Chain{@NamedTuple{layer_1::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_2::Lux.Dense{typeof(NNlib.σ), Int64, Int64, Nothing, Nothing, Static.True}, layer_3::Lux.Dense{typeof(identity), Int64, Int64, Nothing, Nothing, Static.True}}, Nothing}((layer_1 = Dense(2 => 16, σ), layer_2 = Dense(16 => 16, σ), layer_3 = Dense(16 => 1)), nothing), nothing, (layer_1 = NamedTuple(), layer_2 = NamedTuple(), layer_3 = NamedTuple()), nothing, static(true))), NeuralPDE.numeric_derivative, false, nothing, nothing, nothing, NeuralPDE.LogOptions(50), Base.RefValue{Int64}(1), true, false, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}())
Build the PDE system and discretize it.
@named pde_system = PDESystem(eq, bcs, domains, [x, y], [u(x, y)])
prob = discretize(pde_system, discretization)
OptimizationProblem. In-place: true
u0: ComponentVector{Float64}(layer_1 = (weight = [-1.1222529411315918 0.6395617723464966; -0.6218140721321106 -0.720457136631012; … ; -0.07807270437479019 0.16371439397335052; -0.8029779195785522 -0.49542102217674255], bias = [0.3474361002445221, -0.31184300780296326, 0.6202742457389832, -0.09670552611351013, 0.13229617476463318, 0.6966440081596375, 0.1997760683298111, 0.2694702446460724, 0.6044501066207886, -0.6209971308708191, -0.6564324498176575, 0.21250762045383453, -0.1416701376438141, 0.0229464303702116, 0.5081490278244019, 0.5159335732460022]), layer_2 = (weight = [-0.2989715337753296 0.12227608263492584 … 0.21597962081432343 0.4293718934059143; -0.3991950750350952 -0.3122188150882721 … 0.3270843029022217 -0.1880023181438446; … ; -0.23482050001621246 -0.24017439782619476 … 0.07585633546113968 -0.35413554310798645; -0.3130508065223694 -0.08321768790483475 … -0.025621261447668076 -0.1287911832332611], bias = [-0.11655455827713013, -0.10586532950401306, -0.07215151190757751, 0.032992780208587646, 0.1305292844772339, 0.22078007459640503, 0.2402491271495819, 0.02768397331237793, 0.09719166159629822, -0.01827406883239746, -0.038592904806137085, 0.1359422206878662, 0.17371279001235962, 0.09279778599739075, -0.007151186466217041, 0.24503540992736816]), layer_3 = (weight = [-0.04771347716450691 0.05554518476128578 … 0.3934426009654999 -0.2592220604419708], bias = [0.23722699284553528]))
Callback function to record the loss
lossrecord = Float64[]
callback = function (p, l)
push!(lossrecord, l)
return false
end
#1 (generic function with 1 method)
Solve the problem. It may take a long time.
opt = OptimizationOptimJL.LBFGS(linesearch = LineSearches.BackTracking())
res = Optimization.solve(prob, opt, callback = callback, maxiters=1000)
retcode: Success
u: ComponentVector{Float64}(layer_1 = (weight = [-1.3640311695416425 -0.37895227862306463; -0.30870507347662324 -0.41556745032719833; … ; -0.8690549577234251 0.22888509596938794; -0.13494517899438566 -0.5150159905214853], bias = [-0.9070423707500228, 0.053399699746117385, 1.8938470896426478, 0.18073391384072504, 0.17965764164317066, 1.0204666001608644, -1.3945084318838585, 0.32597258742867896, 0.9889321409162648, -0.8484169688401932, -2.020255978993131, 0.5510438454528116, -0.20209779982748088, 0.25747631425574846, 0.7227480363738052, 0.9527660121702912]), layer_2 = (weight = [-0.31382512041539806 0.10091542462717763 … 0.23134558432456714 0.5266301063086443; -0.33896658340906677 -0.29497686059560935 … 0.2691490410088436 -0.07230019019724832; … ; 0.4184539560344784 -0.17821172260905002 … -0.27905256572294024 -1.0336477284033123; -0.7130210566291567 -0.3910612447757921 … 0.07977863129518038 0.1000330150535036], bias = [-0.1335714097607903, -0.20271058342637235, 0.18454203972602423, 0.122365666961942, -0.1310495787749589, 0.932546921676121, 0.38858785084725056, -0.13774925257588053, 0.024197616217348956, 0.24647101982313904, -0.5285098579834663, 0.2235448796862309, -0.011793281042292108, 0.2870048545437379, -0.18762190226726655, 0.5179011212934544]), layer_3 = (weight = [-0.19422726743583155 -0.07595594127135329 … 1.4206066597749838 -1.2153454682159515], bias = [0.7338440375826932]))
plot(lossrecord, xlabel="Iters", yscale=:log10, ylabel="Loss", lab=false)

Plot the predicted solution of the PDE and compare it with the analytical solution to see the relative error.
xs, ys = [infimum(d.domain):dx/10:supremum(d.domain) for d in domains]
analytic_sol_func(x,y) = (sinpi(x)*sinpi(y))/(2pi^2)
phi = discretization.phi
u_predict = reshape([first(phi([x, y], res.u)) for x in xs for y in ys], (length(xs), length(ys)))
u_real = reshape([analytic_sol_func(x, y) for x in xs for y in ys], (length(xs), length(ys)))
diff_u = abs.(u_predict .- u_real)
201×201 Matrix{Float64}:
0.000519919 0.000512311 0.000504585 … 9.44203e-5 4.36244e-5
0.000473602 0.000467937 0.000462102 2.77798e-5 2.39177e-5
0.000428008 0.000424239 0.000420251 3.64589e-5 8.90025e-5
0.000383142 0.000381224 0.000379037 9.83308e-5 0.000151666
0.000339009 0.000338897 0.000338467 0.000157871 0.000211943
0.000295616 0.000297264 0.000298548 … 0.000215113 0.000269869
0.00025297 0.000256333 0.000259286 0.000270092 0.00032548
0.000211077 0.00021611 0.000220688 0.000322842 0.000378811
0.000169945 0.000176603 0.000182762 0.000373397 0.000429895
0.000129582 0.000137819 0.000145517 0.000421791 0.000478769
⋮ ⋱ ⋮
0.00117564 0.00122471 0.00127098 0.000606014 0.000637812
0.00130792 0.0013555 0.00140024 0.000639956 0.000673023
0.00144317 0.00148919 0.00153236 0.000673731 0.000708069
0.00158135 0.00162578 0.00166733 … 0.000707297 0.000742907
0.00172245 0.00176524 0.00180512 0.000740613 0.000777495
0.00186645 0.00190756 0.00194572 0.000773637 0.000811789
0.00201334 0.00205271 0.00208912 0.000806325 0.000845745
0.00216309 0.00220068 0.00223528 0.000838632 0.000879319
0.00231567 0.00235144 0.00238418 … 0.000870516 0.000912464
p1 = plot(xs, ys, u_real, linetype=:contourf, title = "analytic");
p2 = plot(xs, ys, u_predict, linetype=:contourf, title = "predicted");
p3 = plot(xs, ys, diff_u, linetype=:contourf, title = "error");
plot(p1, p2, p3)

This notebook was generated using Literate.jl.