Mount NAS drive in Linux at boot
Add the following entry to /etc/fstab
to automatically mount NAS drives at boot
Add the following entry to /etc/fstab
to automatically mount NAS drives at boot
Find and kill zombie process(es). Source
ps axo stat,ppid,pid,comm | grep -w defunct
Kill parent process(es)
sudo kill -9 <ppid>
The Python package mattduck/gh2md exports Github repository issues and pull requests to a single, readable markdown file.
Some tips about JuliaPy/PyPlot.jl, the matplotlib
(Python) visualization library for Julia. See also docs for matplotlib since PyPlot.jl
largely follows matplotlib
's API.
PyPlot.jl
installation errorsSince PyPlot.jl
depends on the Python package matplotlib
, sometimes simply ]add
the package will not work due to some quirks in the installation process.
In a local computer, it is recommended to have a clean Conda environment inside Julia to minimize issues. To enforce a local miniconda environment inside Julia, set the PYTHON
environment variable to an empty string.
ENV["PYTHON"]=""
And then rebuild related packages.
import Pkg
Pkg.build(["PyCall", "Conda", "PyPlot"])
# should download conda and matplotlib and import PyPlot
using PyPlot
legend()
for both(all) line plot objects.import PyPlot as plt
x1 = 1:10
fig, ax1 = plt.subplots()
l1 = ax1.plot(x1, x1)
ax2 = ax1.twinx()
l2= ax2.plot(x1, exp.(x1))
ax1.legend([first(l1), first(l2)], ["x", "exp(x)"])
Exporting pyplot
figures to TIFF images with a higher dpi and LZW compression.
PyPlot.jl
fig.savefig("fig.tif", dpi=300, pil_kwargs=Dict("compression" => "tiff_lzw"))
PythonPlot.jl
using PythonCall
plt.savefig("fig1.tif", dpi=300, pil_kwargs=pydict(Dict("compression" => "tiff_lzw")))
Changing mplstyle and rcparams in matplotlib
.
Sources:
1. mplstyle and rcparams for matplotlib
2. PyPlot.jl readme
3. mplstyle and rcparams in matplotlib
docs.
matplotlib
import matplotlib as mpl
mpl.rcParams["font.sans-serif"] = "Arial"
mpl.rcParams["font.family"] = "sans-serif"
mpl.rcParams["font.size"] = 12
PyPlot.jl
import PyPlot as plt
rcParams = plt.PyDict(plt.matplotlib."rcParams")
rcParams["font.sans-serif"] = "Arial"
rcParams["font.family"] = "sans-serif"
rcParams["font.size"] = 12
For Plots.jl
, there is an internal pyrcparams
dictionary for the pyplot
(matplotlib
) backend.
using Plots
Plots.pyplot()
Plots.pyrcparams["font.size"] = 12
Plots.pyrcparams["font.sans-serif"] = "Arial"
Plots.pyrcparams["font.family"] = "sans-serif"
PythonPlot.jl
import PythonPlot as plt
plt.matplotlib.rcParams["font.size"] = 14
sqrt(x)
, log(x)
, and pow(x)
will throw DomainError
exceptions with negative x
, interrupting differential equation solvers. One can use these functions' counterparts in JuliaMath/NaNMath.jl, returning NaN
instead of throwing a DomainError
. Then, the solvers will reject the solution and retry with a smaller time step.
sqrt(-1.0) # throws DomainError
import NaNMath as nm
nm.sqrt(-1.0) # NaN
In the VSCode plot panel and fredrikekre/Literate.jl notebooks, PNG images are generally smaller than SVG ones. To force plots to be shown as PNG images, you can use tkf/DisplayAs.jl to show objects in a chosen MIME type.
import DisplayAs.PNG
using Plots
plot(rand(6)) |> PNG
If you don't want to add another package dependency, you could directly use display()
.
using Plots
PNG(img) = display("image/png", img)
plot(rand(6)) |> PNG
f = ODEFunction(sys)
could be useful in plotting vector fields.
using ModelingToolkit
using DifferentialEquations
# Independent (time) and dependent (state) variables (x and RHS)
@independent_variables t
@variables x(t) RHS(t)
# Setting parameters in the modeling
@parameters τ
# Differential operator w.r.t. time
D = Differential(t)
# Equations in MTK use the tilde character (`~`) as equality.
# Every MTK system requires a name. The `@named` macro simply ensures that the symbolic name matches the name in the REPL.
@mtkbuild sys = ODESystem([
RHS ~ (1 - x)/τ,
D(x) ~ RHS
])
tend = 2.0
prob = ODEProblem(sys, [x=>0.0], tend, [τ=>1.0])
prob.f([0.0], prob.p, 0.0) # f(u, p, t) returns the value of D(x)
Use CartesianIndices((nrow, ncol))
, from this discourse post.
x = rand((7, 10))
CI = CartesianIndices((7, 10))
for i in 1:length(x)
r = CI[i][1]
c = CI[i][2]
@assert x[i] == x[r, c]
end